34 resultados para borreliosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance and risk of vector-borne diseases (eg. leishmaniasis, West Nile Virus, Lyme borreliosis) is going to increase in the European temperate areas due to climate change. Our previous studies have shown that the potential distribution of Leishmania infantum and some Phlebotomus (sand fly) species – a parasite of leishmaniasis, and its vectors – may be expanded even to the southern coastline of the Baltic Sea by the end of the 21st century. The lowland areas of the Carpathian Basin and the main part of Hungary are projected to be suitable for the studied sand fly vectors in the near future. It is important to find some indicator plants to examine whether the sand flies are able to live in a certain climate at a certain time. We studied several Mediterranean and Sub-Mediterranean plant species, and we found that the aggregated distribution of three ligneous species (Juniperus oxycedrus L., Quercus ilex L. and Pinus brutia Ten.) shows high correlation with the union distribution of five sand flies (Phlebotomus ariasi Tonn., Ph. neglectus Tonn., Ph. perfiliewi Parrot, Ph. perniciosus Newst. and Ph. tobbi Adler, Theodor et Lourie). Since these Mediterranean species are highly tolerant of the edaphic characteristics of the planting site, they may prove to be good indicators. The present and upcoming climate of Hungary is seen to be suitable for the selected indicator plant species, and it draws attention to and verifies the potential of the expansion of sand flies, which has been proved by some recent observations of the vectors in Southern Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance and risk of vector-borne diseases (e.g., leishmaniasis, West Nile Virus, Lyme borreliosis) is going to increase in the European temperate areas due to climate change. Our previous studies have shown that the potential distribution of Leishmania infantum and some Phlebotomus (sand fly) species – a parasite of leishmaniasis, and its vectors – may be expanded even to the southern coastline of the Baltic Sea by the end of the 21st century. The lowland areas of the Carpathian Basin and the main part of Hungary are projected to be suitable for the studied sand fly vectors in the near future. It is important to find some indicator plants to examine whether the sand flies are able to live in a certain climate at a certain time. We studied several Mediterranean and Sub-Mediterranean plant species, and we found that the aggregated distribution of three ligneous species (Juniperus oxycedrus L., Quercus ilex L. and Pinus brutia Ten.) shows high correlation with the union distribution of five sand flies (Phlebotomus ariasi Tonn., Ph. neglectus Tonn., Ph. perfiliewi Parrot, Ph. perniciosus Newst. and Ph. tobbi Adler, Theodor et Lourie). Since these Mediterranean species are highly tolerant of the edaphic characteristics of the planting site, they may prove to be good indicators. The present and upcoming climate of Hungary is seen to be suitable for the selected indicator plant species, and it draws attention to and verifies the potential of the expansion of sand flies, which has been proved by some recent observations of the vectors in Southern Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.