999 resultados para blue laser


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer materials find application in optical storage technology, namely in the development of high information density and fast access type memories. A new polymer blend of methylene blue sensitized polyvinyl alcohol (PVA) and polyacrylic acid (PAA) in methanol is prepared and characterized and its comparison with methylene blue sensitized PVA in methanol and complexed methylene blue sensitized polyvinyl chloride (CMBPVC) is presented. The optical absorption spectra of the thin films of these polymers showed a strong and broad absorption region at 670-650 nm, matching the wavelength of the laser used. A very slow recovery of the dye on irradiation was observed when a 7:3 blend of polyvinyl alcohol/polyacrylic acid at a pHof 3.8 and a sensitizer concentration of 4.67 10 5 g/ml were used. A diffraction efficiency of up to 20% was observed for the MBPVA/alcohol system and an energetic sensitivity of 2000 mJ/cm2 was obtained in the photosensitive films with a spatial frequency of 588 lines/mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus .cmithii , and fibrin alginolvticus, a Gram-' negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smitltii was observed . The effect of dye on the samples was also studied in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-alkyl-2,6-dimethyl-4(1H)-pyridinones, salts of 4-dimethylaminopyridine and 2-amino-5-nitropyridine are considered to be potential candidates for nonlinear optical (NLO) applications, in particular for the generation of blue-green laser radiation. Single crystals were grown following the slow evaporation technique at constant temperature. Single-shot laserinduced surface damage thresholds in the range 3–10 GW/cm2 were measured using a 18 ns Q-switched Nd:YAG laser. The surface morphologies of the damaged crystals were examined under an optical microscope and the nature of damage identified. The Vicker’s microhardness was determined at a load of 98.07 mN. The thermal transport properties, thermal diffusivity (α), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp), of the grown crystals were measured by an improved photopyroelectric technique at room temperature. All the results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter x 1 mm thick) from each of 2 cements, PanaviaA (R) F2.0 (Kuraray) and RelyX (TM) Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm(2) for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10A degrees C/min from 25 to 700A degrees C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements (p < 0.05). The Tukey`s test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements (p > 0.05). The Relx-Y (TM) Unicem mean values were significantly higher than PanaviaA (R) F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-level laser therapy (LLLT) accelerates tissue repair. Mast cells induce the proliferation of fibroblasts and the development of local fibrosis. The objective of this study was to quantify fibrosis rate and mast cells in connective tissue after endodontic sealer zinc oxide and eugenol (ZOE) was implanted and submitted to LLLT, immediately after implant and again 24 h later. Sixty mice were distributed into three groups: GI, GII, and GIII (n = 20). In GI, the tubes filled with Endofill were implanted in the animals and were not irradiated with LLLT. In GII, the tubes containing Endofill were implanted in the animals and then irradiated with red LLLT (InGaAIP) 685-nm wavelength, D=72 J/Cm(2), E = 2 J, T=58 s, P=35 mW, and in GIII, the tubes with Endofill were implanted and irradiated with infrared LLLT (AsGaAl) 830-nm wavelength, D=70 J/Cm(2), E = 2 J, T=40 s, P=50 mW. After 7 days and 30 days, the animals were killed. A series of 6-mu m-thick sections were obtained and stained with Toluidine Blue and Picrosirius and analyzed under a standard light microscope using a polarized light filter for the quantification of fibrosis. The statistics were qualitative and quantitative with a significance of 5%. The irradiation with LLLT did not offer improvement in the fibrosis rate, however, it provided a significant decrease in the concentration of independent mast cells for the period studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate in vitro the degree of marginal leakage in Class V cavities involving the cementoenamel junction. Cavities were 4 rum wide and 2 mm deep. The specimens received dentin pretreatment (37% phosphoric acid) followed by the Single Bond (3M) adhesive system application. The 40 specimens were then divided into four groups: Group I (control); Group 2 (Nd:YAG laser at 120 mJ/pulse, frequency of 10 Hz, power of 1.2 W); Group 3 (Nd:YAG laser at 140 mJ/pulse, frequency of 10 Hz, power of 1.4 W); Group 4 (Nd:YAG laser at 160 mJ/pulse, frequency of 10 Hz, power of 1.6 W). The cavities were restored with Z100 composite resin (3M) and light cured at 300-600 mW/cm(2) light intensity. Specimens were thermocycled to 500 cycles from 2-50 degrees C. After that, they were dried and sealed with nail varnish, respecting 1 mm around the restorations, and immersed in 0.5% methylene blue solution for 4 h. After this period, the teeth were rinsed, dried, sectioned, and analyzed in a stereoscopic loupe. The highest leakage scores were considered for each specimen. The results were statistically analyzed by the analysis of variance (ANOVA) Kruskal-Wallis test to the 5% level. For both the enamel and cementum, there was a decrease in marginal leakage with the application of laser energy; no significant differences were observed for Groups 2, 3, and 4. The results also showed a smaller tendency to marginal leakage on the cementum than on the enamel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To evaluate the effectiveness of the color change of hybrid light-emitting diode (LED) and low-intensity infrared diode laser devices for activating dental bleaching and to verify the occurrence of a color regression with time. Material and methods. A total of 180 specimens obtained from human premolars were immersed in a coffee solution for 15 days for darkening and then divided into eight experimental groups (n = 20 in each) as follows: G1, bleaching without light; G2, bleaching with halogen light; G3, bleaching with a blue LED (1000 mW/470 nm) and a laser device (120 mW/795 nm) simultaneously; G4, bleaching with an LED emitting blue light (1000 mW/470 nm); G5, bleaching with a blue LED (800 mW/470 nm) and a laser device (500 mW/830 nm) simultaneously; G6, bleaching with a blue LED device (800 mW); G7, bleaching with a green LED (600 mW/530 nm) and a laser device (120 mW/795 nm) simultaneously; and G8, bleaching with a green LED (600 mW). Three measurements were performed (at baseline and 14 days and 12 months after bleaching) using a Vita Easyshade spectrophotometer. The data were submitted to two-way ANOVA and a Tukey test. Results. All groups showed significantly higher Delta E values than Group G1, with the exception of Group G8. Variations in the Delta E values at 14 days were significant when compared with those obtained at baseline and after 12 months. Conclusions. Light activation of the bleaching gel provided faster and more intense bleaching than use of the bleaching gel without light activation. Combinations of low-intensity diode lasers are ineffective as a bleaching gel activator. Color regression was observed after 12 months of storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue luminescence emission around 480 nm through cooperative upconversion from pairs of Yb3+ ions implanted into 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses and excited by a cw laser at 1.064 mum is demonstrated. Cooperative luminescence emission enhancement owing to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium ions is also observed. The experimental results revealed a fourfold enhancement in the cooperative luminescence emission when the sample was heated in the temperature range of 20 degreesC-260 degreesC. The thermally induced enhancement is assigned to the effective absorption cross-section for the ytterbium ions which is an increasing function of the medium temperature. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of the laser radiation (685 nm) associated with photosensitizers on viability of different species of Candida genus. Suspensions of Candida albicans, Candida dubliniensis, Candida krusei and Candida tropicalis, containing 106 viable cells per milliliter were obtained with the aid of a Neubauer's chamber. From each species, 10 samples of the cell suspension were irradiated with diode laser (685 nm) with 28 J/cm(2) in the presence of methylene blue (0.1 mg/ml), 10 samples were only treated with methylene blue, 10 samples were irradiated with laser in the absence of the dye, 10 samples were treated with the dye and irradiated with laser light and 10 samples were exposed to neither the laser light nor to the methylene blue dye. From each sample, serial dilutions of 10(-2) and 10(-3) were obtained and aliquots of 0.1 ml of each dilution were plated in duplicate on Sabouraud dextrose agar. After incubation at 37 degrees C for 48 h, the number of colony-forming units (CFU/ml) was obtained and data were submitted to ANOVA and Tukey's test (p < 0.05). Laser radiation in the presence of methylene blue reduced the number of CFU/ml in 88.6% for C. albicans, 84.8% for C. dubliniensis, 91.6% for C krusei and 82.3% for C tropicalis. Despite of this, only laser radiation or methylene blue did not reduce significantly the number of CFU/ml of Candida samples, except for C tropicalis. It could be concluded that the photo activation of methylene blue by the red laser radiation at 685 nm presented fungicide effect on all Candida species studied. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue-green and red photoluminescence (PL) emission in structurally disordered CaTiO3:Sm (CT:Sm) powders was observed at room temperature with laser excitation at 350.7 nm. The perovskite-like titanate CT:Sm powders prepared by a soft chemical processing at different temperatures of annealing were structurally characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES). The results indicate that the generation of the broad PL band is related to order-disorder degree in the perovskitelike structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the observation of intense frequency up-conversion in Nd3+-doped fluoroindate glasses pumped by the second harmonic of a cw mode-locked Nd: YAG laser. Mechanisms for generating the observed emissions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480 - 740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the 3P0 - 3HJ (J=4, 5, and 6), and 3P0 - 3FJ (J=2, and 3,4), transitions, respectively, were observed. The population of the praseodymium upper 3P0 emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the 2F7/2, energy-transfer Yb3+(2F 5/2) Pr3+(3H4), and excited-state absorption of Pr3+ ions provoking the 1G4 - 3P0 transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism.