939 resultados para blood lactate concentration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-Adrenoreceptor blockade is reported to impair endurance, power output and work capacity in healthy subjects and patients with hypertension. The purpose of this study was to investigate the effect in eighth athletic males of an acute β-adrenergic blockade with propranolol on their individual power output corresponding to a defined lactate minimum (LM). Eight fit males (cyclist or triathlete) performed a protocol to determine the power output corresponding to their individual LM (defined from an incremental exercise test after a rapidly induced exercise lactic acidosis). This protocol was performed twice in a double-blind randomized order by each athlete first ingesting propranolol (80mg) and in a second trial a placebo, 120 minutes respectively prior to the test sequence. The blood lactate concentration obtained 7 minutes after anaerobic exercise (a Wingate test) was significantly lower after acute β-adrenergic blockade (8.6 ± 1.6mM) than under the placebo condition (11.7 ± 1.6mM). The work rate at the LM was lowered from 215.0 ± 18.6 to 184.0 ± 18.6 watts and heart rate at the LM was reduced from 165 ± 1.5 to 132 ± 2.2 beats/minute as a result of the blockade. There was a non-significant correlation (r = 0.29) between the power output at the LM with and without acute β-adrenergic blockade. In conclusion, since the intensity corresponding to the LM is related to aerobic performance, the results of the present study, are able to explain in part, the reduction in aerobic power output produced during β-adrenergic blockade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 ± 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 ± 1.4 km·h-1) and MLSS (13.1 ± 1.2 km·h-1) and between OBLA and CV (14.4 ± 1.1 km·h-1). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity. © 2005 National Strength & Conditioning Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The higher concentration during exercise at which lactate entry in blood equals its removal is known as maximal lactate steady state (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in running rats. Adult male Wistar sedentary rats, which were selected and adapted to treadmill running for three weeks, were used. After becoming familiarized with treadmill running, the rats were submitted to five exercise tests at 15, 20, 25, 30 and 35 m/min velocities. The velocity sequence was distributed at random. Each test consisted of continuous running for 25 min at one velocity or until the exhaustion. Blood lactate was determined at rest and each 5 min of exercise to find the MLSS. The running rats presented MLSS at the 20 m/min velocity, with blood lactate of 3.9±1.1 mmol/L. At the 15 m/min velocity, the blood lactate also stabilized, but at a lower concentration (3.2±1.1 mmol/L). There was a progressive increase in blood lactate concentration at higher velocities, and some animals reached exhaustion between the 10 th and 25 th minute of exercise. These results indicate that the protocol of MLSS can be used for determination of the maximal aerobic intensity in running rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute administration of an indirect activator of the enzyme pyruvate dehydroge-nase (PDH) in human athletes causes a reduction in blood lactate level during and after exercise. A single IV dose (2.5m.kg-1) of dichloroacetate (DCA) was administered before a submaximal incremental exercise test (IET) with five velocity steps, from 5.0 m.s-1 for 1 min to 6.0, 6.5, 7.0 and 7.5m.s-1 every 30s in four untrained mares. The blood collections were done in the period after exercise, at times 1, 3, 5, 10, 15 and 20 min. Blood lactate and glucose (mM) were determined electro-enzymatically utilizing a YSI 2300 automated analyzer. There was a 15.3% decrease in mean total blood lactate determined from the values obtained at all assessment times in both trials after the exercise. There was a decrease in blood lactate 1, 3, 5, 10, 15 and 20 min after exercise for the mares that received prior DCA treatment, with respective mean values of 6.31±0.90 vs 5.81±0.50, 6.45±1.19 vs 5.58±1.06, 6.07±1.56 vs 5.26±1.12, 4.88±1.61 vs 3.95±1.00, 3.66±1.41 vs 2.86±0.75 and 2.75±0.51 vs 2.04±0.30. There was no difference in glucose concentrations. By means of linear regression analysis, V140, V160, V180 and V200 were determined (velocity at which the rate heart is 140, 160, 180, and 200 beats/minute, respectively). The velocities related to heart rate did not differ, indicating that there was no ergogenic effect, but prior administration of a relatively low dose of DCA in mares reduced lactatemia after an IET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims were both to determine lactate and ventilatory threshold during incremental resistance training and to analyze the acute cardiorespiratory and metabolic responses during constant-load resistance exercise at lactate threshold (LT) intensity. Ten healthy men performed 2 protocols on leg press machine. The incremental test was performed to determine the lactate and ventilatory thresholds through an algorithmic adjustment method. After 48 h, a constant-load exercise at LT intensity was executed. The intensity of LT and ventilatory threshold was 27.1 +/- 3.7 and 30.3 +/- 7.9% of 1RM, respectively (P=0.142). During the constant-load resistance exercise, no significant variation was observed between set 9 and set 15 for blood lactate concentration (3.3 +/- 0.9 and 4.1 +/- 1.4 mmol.L-1, respectively. P=0.166) and BORG scale (11.5 +/- 2.9 and 13.0 +/- 3.5, respectively. P=0.783). No significant variation was observed between set 6 and set 15 for minute ventilation (19.4 +/- 4.9 and 22.4 +/- 5.5L. min(-1), respectively. P=0.091) and between S3 and S15 for VO2 (0.77 +/- 0.18 and 0.83 +/- 0.16L. min(-1), respectively. P=1.0). Constant-load resistance exercise at LT intensity corresponds to a steady state of ventilatory, cardio-metabolic parameters and ratings of perceived exertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The principal aim of this investigation was to determine the influence of blood haemoglobin concentration ([Hb]) on maximal exercise capacity and maximal O(2) consumption (V(O(2),max)) in healthy subjects acclimatised to high altitude. Secondarily, we examined the effects of [Hb] on the regulation of cardiac output (CO), blood pressure and muscular blood flow (LBF) during exercise. Eight Danish lowlanders (three females and five males; 24 +/- 0.6 years, mean +/- S.E.M.) performed submaximal and maximal exercise on a cycle ergometer after 9 weeks at an altitude of 5260 m (Mt Chacaltaya, Bolivia). This was done first with the high [Hb] resulting from acclimatisation and again 2-4 days later, 1 h after isovolaemic haemodilution with Dextran 70 to near sea level [Hb]. After measurements at maximal exercise while breathing air at each [Hb], subjects were switched to hyperoxia (55 % O(2) in N(2)) and the measurements were repeated, increasing the work rate as tolerated. Hyperoxia increased maximal power output and leg V(O(2),max), showing that breathing ambient air at 5260 m, V(O(2),max) is limited by the availability of O(2) rather than by muscular oxidative capacity. Altitude increased [Hb] by 36 % from 136 +/- 5 to 185 +/- 5 g l(-1) (P < 0.001), while haemodilution (replacing 1 l of blood with 1 l of 6 % Dextran) lowered [Hb] by 24 % to 142 +/- 6 g l(-1) (P < 0.001). Haemodilution had no effect on maximal pulmonary or leg V(O(2),max), or power output. Despite higher LBF, leg O(2) delivery was reduced and maximal V(O(2)) was thus maintained by higher O(2) extraction. While CO increased linearly with work rate irrespective of [Hb] or inspired oxygen fraction (F(I,O(2))), both LBF and leg vascular conductance were systematically higher when [Hb] was low. Close and significant relationships were seen between LBF (and CO) and both plasma noradrenaline and K(+) concentrations, independently of [Hb] and F(I,O(2)). In summary, under conditions where O(2) supply limits maximal exercise, the increase in [Hb] with altitude acclimatisation does not improve maximal exercise capacity or V(O(2),max), and does not alter peak CO. However, LBF and vascular conductance are higher at altitude when [Hb] is lowered to sea level values, with both relating closely to catecholamine and potassium concentrations. This suggests that the lack of effect of [Hb] on V(O(2),max) may involve reciprocal changes in LBF via local metabolic control of the muscle vasculature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of a filtering half-face respirator and a half-face supplied air respirator use on blood lactate production was assessed during maximal exertion to determine if anaerobic strain increased compared to no respirator use. Twenty-eight participants performed a 30 second cycling Wingate anaerobic test (WAnT) wearing a half-face respirator. Blood lactate production was measured to evaluate if there was an increase in anaerobic strain from wearing a tight fitting half-face respirator compared to wearing no respirator. A supplied air respirator WAnT was then performed using 18 participants from the first experiment to evaluate if supplied air decreased anaerobic strain. Data from both experiments were compared to evaluate differences in the physiological effects due to respirator use during maximal exertion. A survey was administered following the second WAnT experiment to measure the participants' perception of acceptability and impact of supplied air respirator use in workplace. The blood lactate levels measured directly after the WAnT yielded lower overall mean values during the half-mask respirator trial (12.1 mmollL) and supplied air respirator trial (12.2 mmollL) than the no respirator trial (13.1 mmoI/L). However, differences in blood lactate levels were not statistically significant (p =0.597). Participants reported an average acceptability of 92.3% to wearing the supplied air respirator while performing light work. However, the average acceptability decreased as the exertion increased to moderate (78.8%) and heavy (46.6%) workloads. The supplied air respirator used provided no significant reduction in anaerobic strain within this study group compared to either the filtering half-face respirator or the no respirator condition. However, there were differences in physiological effects of respirators on each gender identified in this study. Further assessment of the anaerobic impact of respirators on each gender should be conducted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last century, several mathematical models have been developed to calculate blood ethanol concentrations (BAC) from the amount of ingested ethanol and vice versa. The most common one in the field of forensic sciences is Widmark's equation. A drinking experiment with 10 voluntary test persons was performed with a target BAC of 1.2 g/kg estimated using Widmark's equation as well as Watson's factor. The ethanol concentrations in the blood were measured using headspace gas chromatography/flame ionization and additionally with an alcohol Dehydrogenase (ADH)-based method. In a healthy 75-year-old man a distinct discrepancy between the intended and the determined blood ethanol concentration was observed. A blood ethanol concentration of 1.83 g/kg was measured and the man showed signs of intoxication. A possible explanation for the discrepancy is a reduction of the total body water content in older people. The incident showed that caution is advised when using the different mathematical models in aged people. When estimating ethanol concentrations, caution is recommended with calculated results due to potential discrepancies between mathematical models and biological systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract of the poster presented at the First international Congress of CiiEM “From Basic Sciences to Clinical Research”, 27-28 November 2015, Egas Moniz, Caparica, Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.