825 resultados para bivalve mollusks
Resumo:
The sub-fossil fauna from the Late Quaternary marine deposits of Santa Maria is made of more than 50 species of gastropods and bivalves, 19 of them collected recently and for the first time in the northern coast of the island (Lagoinhas Bay). The sub-fossil shells are found in deposits of beach sands, situated 2-3 meters above the present low tide. The carbonated sands from the basal part of the succession yield an autochthonous association of borers dominated by the bivalve Myoforceps aristata (Dillwin, 1817). Upwards, the marine sands contain concentrations of beach drift shells, including well-preserved supratidal and intertidal gastropods, among them a large number of Rissoidae. The bivalve fauna is dominated by disarticulated valves of Ervilia castanea (Montagu, 1803), a small infaunal coloniser of mobile sandy substrates. The composition of the fauna is made essentially of West European species, many of them common to the West Coast of Portugal. However, a few "warm guests" with West African or Caribbean affinities were also found, suggesting a close relation with some of the "Tyrrhenian" warm associations found in the Western Mediterranean.
Resumo:
Fossils of the gastropods Diodora patagonica, Zidona dufresnei, Olivancillaria carcellesi, Lamniconus lemniscatus carcellesi and the bivalve Arcinella brasiliana are registered for the first time from the outcrops of Chui Creek, on the coastal plain of Rio Grande do Sul State, southernmost Brazil, together with other taxa previously known elsewhere. The specimens were collected in a shallow Pleistocene marine facies exposed at the base of the banks of the creek, in a fossil concentration possibly formed by storm events. The taxa described here live in shallow environments (with the exception of A. brasiliana and Z. dufresnei) with sandy bottoms (except for D. patagonica, T patagonica, B. odites, C. rhizophorae and A. brasiliana). The presence of L. lemniscatus carcellesi, found living today only in Uruguay and Argentina, indicates a wider distribution for this taxon during the late Pleistocene.
Resumo:
The combustion of fossil fuels has enriched levels of CO2 in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO3shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO2concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenariaand Argopecten irradians). Larvae grown under near preindustrial CO2concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO2 levels. Bivalves grown under near preindustrial CO2 levels displayed thicker, more robust shells than individuals grown at present CO2 concentrations, whereas bivalves exposed to CO2 levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.
Resumo:
Anthropogenic emissions of carbon dioxide are leading to decreases in pH and changes in the carbonate chemistry of seawater. Ocean acidification may negatively affect the ability of marine organisms to produce calcareous structures while also influencing their physiological responses and growth. The aim of this study was to evaluate the effects of reduced pH on the survival, growth and shell integrity of juveniles of two marine bivalves from the Northern Adriatic sea: the Mediterranean mussel Mytilus galloprovincialis and the striped venus clam Chamelea gallina. An outdoor flow-through plant was set up and two pH levels (natural seawater pH as a control, pH 7.4 as the treatment) were tested in long-term experiments. Mortality was low throughout the first experiment for both mussels and clams, but a significant increase, which was sensibly higher in clams, was observed at the end of the experiment (6 months). Significant decreases in the live weight (-26%) and, surprisingly, in the shell length (-5%) were observed in treated clams, but not in mussels. In the controls of both species, no shell damage was ever recorded; in the treated mussels and clams, damage proceeded via different modes and to different extents. The severity of shell injuries was maximal in the mussels after just 3 months of exposure to a reduced pH, whereas it progressively increased in clams until the end of the experiment. In shells of both species, the damaged area increased throughout the experiment, peaking at 35% in mussels and 11% in clams. The shell thickness of the treated and control animals significantly decreased after 3 months in clams and after 6 months in mussels. In the second experiment (3 months), only juvenile mussels were exposed to a reduced pH. After 3 months, the mussels at a natural pH level or pH 7.4 did not differ in their survival, shell length or live weight. Conversely, shell damage was clearly visible in the treated mussels from the 1st month onward. Monitoring the chemistry of seawater carbonates always showed aragonite undersaturation at 7.4 pH, whereas calcite undersaturation occurred in only 37% of the measurements. The present study highlighted the contrasting effects of acidification in two bivalve species living in the same region, although not exactly in the same habitat.
Resumo:
1
Resumo:
The unusual bivalve Guiratingia mendesi is redescribed from the original material. Detailed analysis of hinge and muscle scars allows more refined designation of its taxonomic position and affinities to other Permian bivalves from the Parana Basin. Guiratingia mendesi is characterized by very small, anteriorly expanded shells, with a great number of muscle striae within the area delimited by the pallial line. A flattened area is noted alongside the commissure of shell. The presence of a triangular blunt tooth in the right valve allows its designation to Megadesmidae. The absence of accessory muscle scars ""a"" and ""b"" and pedal elevator indicate that the genus belongs to the Plesiocyprinellinae, a group of bivalves considered endemic to the Passa Dois Group. Guiratingia mendesi is found, however, in limestones of the Palermo Formation (Middle Artinskian), nearly 100 in below the base of the Irati Formation (Late Artinskian). Until now, it was believed that within the Permian succession of Parana Basin, pre-Irati bivalves were all gondwanic or cosmopolitan. Guiratingia mendesi was an endemic, active burrower that resembles Runnegariella fragilis from the Permian Teresina Formation. This indicates that during Palermo times restricted paleogeographic conditions have existed within the huge Parana epeiric sea, favoring endemicity, probably in marine bayments close to its margins. The presence of an anteriorly expanded shell in G mendesi is a condition also seen in other Mesozoic and Cenozoic anomalodesmatans, demonstrating the recurrence of shell forms in distinct lineages of this interesting group of bivalves.
Resumo:
The aim of this study was to determine if Toxoplasma gondii are present in oysters (Crassostrea rhizophorae) and mussels (Mytella guyanensis) under natural conditions using a bioassay in mice and molecular detection methods. We first compared two standard protocols for DNA extraction, phenol-chloroform (PC) and guanidine-thiocyanate (GT), for both molluscs. A total of 300 oysters and 300 mussels were then acquired from the fish market in Santos city, Sao Paulo state, Brazil, between March and August of 2008 and divided into 60 groups of 5 oysters and 20 groups of 15 mussels. To isolate the parasite, five mice were orally inoculated with sieved tissue homogenates from each group of oysters or mussels. For molecular detection of T. gondii, DNA from mussels was extracted using the PC method and DNA from oysters was extracted using the GT method. A nested-PCR (Polymerase Chain Reaction) based on the amplification of a 155 bp fragment from the B1 gene of T. gondii was then performed. Eleven PCR-RFLP (Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, CS3 and Apico, were used to genotype positive samples. There was no isolation of the parasite by bioassay in mice. T. gondii was not detected in any of the groups of mussels by nested-PCR. DNA of T. gondii was apparently detected by nested-PCR in 2 groups of oysters (3.3%). Genotyping of these two positive samples was not successful. The results suggest that oysters of the species C. rhizophorae, the most common species from the coast of Sao Paulo, can filter and retain T. gondii oocysts from the marine environment. Ingestion of raw oysters as a potential transmission source of T. gondii to humans and marine mammals should be further investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The state of research on the evolution of marine bivalve taxonomic diversity of the Mediterranean Pliocene is analysed. The following assertions are discussed: 1) The Early Pliocene malacofauna is characterized by a high number of warm-water taxa and a high taxonomic diversity with respect to that of the present time. 2) The first appreciable extinction event in the Mediterranean Pliocene approximates or just follows the FO of Globorotalia bononiensis. 3) The second appreciable extinction event is between the LAD of Discoaster tamalis and the LAD of Discoaster surculus . 4) A third minor extinction event is penecontemporaneous with the FO of Globorotalia inflaia. Taking into account the available data on the Pliocene extinction events it has been possible to distinguish 4 different molluscan units with different climatic-oceanographic significance.
Resumo:
The state of research on the evolution of marine bivalve taxonomic diversity of the Mediterranean Pliocene is analysed. The following assertions are discussed: 1) The Early Pliocene malacofauna is characterized by a high number of warm-water taxa and a high taxonomic diversity with respect to that of the present time. 2) The first appreciable extinction event in the Mediterranean Pliocene approximates or just follows the FO of Globorotalia bononiensis. 3) The second appreciable extinction event is between the LAD of Discoaster tamalis and the LAD of Discoaster surculus. 4) A third minor extinction event is penecontemporaneous with the FO of Globorotalia inflata. Taking into account the available data on the Pliocene extinction events it has been possible to distinguish 4 different molluscan units with different climatic-oceanographic significance.
Resumo:
A collection of fossil gastropods and bivalves assembled at the Thanetian/Ypresian vertebrate site of Silveirinha (Figueira da Foz, West Central Portugal) is analysed from the point of view of systematics and palaeoecology. The diversity is scarce but the age and exceptional characteristics of the site are factors that substantiate a detailed study. The taxa identified are: Bithynia soaresi sp. nov., Gyraulus antunesi sp. nov., Chlamys sp. and Cardiiacea gen. sp. indet. The prevailing of freshwater gastropods and the occurrence of 2 fragments of marine bivalves suggest a palaeoenvironmental setting that is in conformity with interpretations already established, which are based both in sedimentologic and vertebrate data. These interpretations point out the existence of a freshwater environment opened from time to time to marine influences, resulting from a palaeoatlantic coast placed some kilometres westwards.
Resumo:
Twenty mice were exposed to cercariae from mollusks treated with hydrocortisone and another 20 mice received cercariae from non-treated mollusks. The behavior of the parasites from the two groups of mollusks was compared based on the ability of cercariae to penetrate mice, on the total number of worms recovered after eight weeks of infection, on the relationship between the number of penetrating cercariae and the number of recovered worms and on the number of eggs in the feces. Treating the mollusks with hydrocortisone did not alter the ability of cercariae to penetrate mice nor did it affect the total number of worms recovered. The number of female worms, the number of coupled worms and the number of eggs in the feces were greater in mice infected by cercariae from mollusks treated with hydrocortisone.
Resumo:
Mollusks of the genus Conus present a venomous apparatus composed of radulae, a chitin structure linked to glands, which injects potent neurotoxic peptides, causing serious human envenomation and even death, associated with the blockage of certain receptors and muscular paralysis. No reported envenomation has occurred in Brazil, but certain populations are at risk of accidents.
Resumo:
Introduction This research aimed to identify and quantify potentially pathogenic Vibrio from different cultivations of bivalve shellfish in the State of Santa Catarina, Brazil, and water regions in the South Bay, as well as correlate the incidence of these microorganisms with the physicochemical parameters of marine waters. Methods Between October 2008 and March 2009, 60 oyster and seawater samples were collected from six regions of bivalve mollusk cultivation, and these samples were submitted for Vibrio counts. Results Twenty-nine (48.3%) oyster samples were revealed to be contaminated with one or more Vibrio species. The Vibrio parahaemolyticus and Vibrio vulnificus counts in the samples ranged from < 0.5 log10 Most Probable Number (MPN) g–1 to 2.3 log10 MPN g–1 oyster and from < 0.5 log10 MPN g–1 to 2.1 log10 MPN g–1 oyster, respectively. Of the 60 seawater samples analyzed, 44 (73.3%) showed signs of contamination with one or more vibrio species. The counts of V. parahaemolyticus and V. vulnificus in the samples ranged from < 0.3 log10 MPN·100mL–1 to 1.7 log10MPN·100mL–1 seawater and from < 0.3 log10 MPN·100mL–1 to 2.0 log10 MPN·100mL–1 seawater, respectively. A positive correlation between V. vulnificus counts and the seawater temperature as well as a negative correlation between the V. parahaemolyticus counts and salinity were observed. Conclusions The results suggest the need to implement strategies to prevent vibrio diseases from being transmitted by the consumption of contaminated bivalve shellfish.