999 resultados para biotechnological application
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.
Resumo:
The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.
Resumo:
The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
Waste management worldwide has received increasing attention from global policies in recent years. In particular, agro-industrial streams represent a global concern due to the huge volumes generated and a high number of residues, which produce an environmental and economic impact on the ecosystem. The use of biotechnological approaches to treat these streams could allow the production of desirable by-products to be reinjected into the production cycle through sustainable processes. Purple phototrophic bacteria (PPB) are targeted as microorganisms capable to reduce the pressure of agro-industrial streams on environmental issues, due to their metabolic versatility (autotrophic and/or heterotrophic growth under different conditions). This Ph.D. research project aims to assess the effectiveness of PPB cultivation for industrial streams valorisation in the applications of biogas desulfurization and microbial protein production. For these purposes, the first part of the present work is dedicated to the cultivation of purple sulfur bacteria (PSB) for biogas streams upgrading, cleaning biogas from sulfur compounds (H2S), and producing elemental sulfur (S0), potentially suitable as a slow-release fertilizer. The second part of the thesis, instead, sees the application of purple non-sulfur bacteria (PNSB) on streams rich in organics, such as molasses, generating biomass with high content of proteins and pigments, useful as supplements in animal feed. The assessment of the main metabolic mechanisms involved in the two processes is evaluated at a laboratory scale using flasks and a photobioreactor, to define the consumption of substrates and the accumulation of products both in the autotrophic (on biogas) and in heterotrophic grow (on molasses). In conclusion, the effectiveness of processes employing PPB for a sustainable valorisation of several agro-industrial streams has been proved promising, using actual residues, and coupling their treatments with the production of added-value by-products.
Resumo:
The PhD research project was a striking example of the enhancement of milling by-product and alternative protein sources from house cricket (Acheta domesticus), conceived as sustainable and renewable sources, to produce innovative food products. During milling processing of wheat and rye, several by-products with high technological and functional potential, are produced. The use of selected microbial consortia, allowed to obtain a pre-fermented ingredient for use in the bakery. The pre-ferments obtained were characterized by a high technological, functional and nutritional value, also interesting from a nutraceutical point of view. Bakery products obtained by the addition of pre-fermented ingredients were characterized by a greater quantity of aromatic molecules and an increase in SCFA, antioxidant activity, total amino acids and total phenols resulting in positive effect on the functionality. Moreover, the industrial scaling-up of pre-ferment and innovative bakery goods production, developed in this research, underlined the technological applicability of pre-fermented ingredients on a large scale. Moreover, the identification of innovative protein sources, can address the request of new sustainable ingredients able to less impact on the environment and to satisfy the food global demand. To upscale the insect production and ensure food safety of insect-based products, biotechnological formulations based on Acheta domesticus powder were optimized. The use of Yarrowia lipolytica in the biotechnological transformation of cricket powder led to the achievement of a cricket-based food ingredient characterized by a reduced content of chitin and an increase of antimicrobial and health-promoting molecules. The innovative bakery products containing cricket-based hydrolysates from Y. lipolytica possessed specific sensory, qualitative and functional characteristics to the final product. Moreover, the combination of Y. lipolytica hydrolysis and baking showed promising results regarding a reduced allergenicity in cricket-based baked products. Thus, the hydrolysate of cricket powder may represent a versatile and promising ingredient in the production of innovative foods.
Resumo:
A rapid, sensitive and specific method for quantifying propylthiouracil in human plasma using methylthiouracil as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethyl acetate). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS) in negative mode (ES-). Chromatography was performed using a Phenomenex Gemini C18 5μm analytical column (4.6mm×150mm i.d.) and a mobile phase consisting of methanol/water/acetonitrile (40/40/20, v/v/v)+0.1% of formic acid. For propylthiouracil and I.S., the optimized parameters of the declustering potential, collision energy and collision exit potential were -60 (V), -26 (eV) and -5 (V), respectively. The method had a chromatographic run time of 2.5min and a linear calibration curve over the range 20-5000ng/mL. The limit of quantification was 20ng/mL. The stability tests indicated no significant degradation. This HPLC-MS/MS procedure was used to assess the bioequivalence of two propylthiouracil 100mg tablet formulations in healthy volunteers of both sexes in fasted and fed state. The geometric mean and 90% confidence interval CI of Test/Reference percent ratios were, without and with food, respectively: 109.28% (103.63-115.25%) and 115.60% (109.03-122.58%) for Cmax, 103.31% (100.74-105.96%) and 103.40% (101.03-105.84) for AUClast. This method offers advantages over those previously reported, in terms of both a simple liquid-liquid extraction without clean-up procedures, as well as a faster run time (2.5min). The LOQ of 20ng/mL is well suited for pharmacokinetic studies. The assay performance results indicate that the method is precise and accurate enough for the routine determination of the propylthiouracil in human plasma. The test formulation with and without food was bioequivalent to reference formulation. Food administration increased the Tmax and decreased the bioavailability (Cmax and AUC).
Resumo:
Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re-rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7(th) , 14(th) , or 21(st) day post-surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera-treated group on the 14(th) day compared with the control. Also at 14 days post-surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera-treated tendons compared with the control. No differences were observed in the chondroitin-6-sulfate and TGF-β1 levels between the groups, and higher amount of non-collagenous proteins was detected in the A. vera-treated group on the 21(st) day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non-collagenous proteins.
Resumo:
We describe herein a general method for the controlled Heck arylation of allylated malonates. Both electron-rich and electron-poor aryldiazonium salts were readily employed as the aryl-transfer agents in good yields and in high chemo-, regio-, and stereoselectivity without formation of decarboxylated byproducts. Reaction monitoring via ESI-MS was used to support the formation of chelated Pd species through the catalytic cycle. Additionally, some Heck adducts were successfully used in the total synthesis of pharmacologically active γ-lactones.
Resumo:
Streptococcus mutans is specifically suppressed by intensive treatment with chlorhexidine gel, but the time for recolonization and the effect on other oral bacteria are not totally clear. In this study, recolonization of mutans streptococci was evaluated in nine healthy adult volunteers, who were highly colonized with this microorganism. Stimulated saliva was collected before (baseline) and at 1, 7, 14, 21 and 28 days after application of 1% chlorhexidine gel on volunteers' teeth for two consecutive days. On each day, the gel was applied using disposable trays for 3 x 5 min with intervals of 5 min between each application. Saliva was plated on blood agar to determine total microorganisms (TM); on mitis salivarius agar to determine total streptococci (TS) and on mitis salivarius agar plus bacitracin to determine mutans streptococci (MS). Chlorhexidine was capable of reducing the counts of MS and the proportion of MS with regard to total microorganisms (%MS/TM) (p<0.05), but these values did not differ statistically from baseline (p>0.05) after 14 days for MS and 21 days for %MS/TM. The counts of TM and TS and the proportion of MS to total streptococci did not differ statistically from baseline (p>0.05) after chlorhexidine treatment. The results suggest that the effect of chlorhexidine gel treatment on suppression of mutans streptococci is limited to less than a month in highly colonized individuals.
Resumo:
The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility.
Resumo:
To verify the methods used by the clinical trials that assessed the effect of tactile/kinesthetic stimulation on weight gain in preterm infants and highlight the similarities and differences among such studies. This review collected studies from two databases, PEDro and PubMed, in July of 2014, in addition to bibliographies. Two researchers assessed the relevant titles independently, and then chose which studies to read in full and include in this review by consensus. Clinical trials that studied tactile stimulation or massage therapy whether or not associated with kinesthetic stimulation of preterm infants; that assessed weight gain after the intervention; that had a control group and were composed in English, Portuguese, or Spanish were included. A total of 520 titles were found and 108 were selected for manuscript reading. Repeated studies were excluded, resulting in 40 different studies. Of these, 31 met all the inclusion criteria. There were many differences in the application of tactile/kinesthetic stimulation techniques among studies, which hindered the accurate reproduction of the procedure. Also, many studies did not describe the adverse events that occurred during stimulation, the course of action taken when such events occurred, and their effect on the outcome. These studies made a relevant contribution towards indicating tactile/kinesthetic stimulation as a promising tool. Nevertheless, there was no standard for application among them. Future studies should raise the level of methodological rigor and describe the adverse events. This may permit other researchers to be more aware of expected outcomes, and a standard technique could be established.