891 resultados para bioreactor chambers
Resumo:
The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
微重力对空间细胞培养的影响规律一直是国际空间生物学的重点研究领域。而空间细胞培养技术和方法作为空间细胞生物学研究的基础,其概念性和原理性设计是正确区分重力对细胞的直接作用和间接作用的前提。另外,空间实验成本高昂,空间细胞培养装置的体积、重量、功耗是首要的制约因素。为保证充分物质交换,满足细胞代谢需求,同时尽可能降低由细胞供液形式产生的力学环境对细胞的影响,区分重力对细胞的直接作用和间接作用,我们研制了逆流片层式微型细胞培养装置。实验表明为使培养液流动对细胞生长影响最小,流动剪切应变率应小于1s-1。通过理论计算分析的逆流片层式微型细胞培养装培养室内流场及流动剪切范围表明,该装置可以满足要求。通过实验检测细胞培养时的氧耗、糖耗等,可以确定不同种类细胞的培养液流量范围。培养室内采用经表面改性的聚合物网架作为细胞载体,使得培养空间得到充分利用,并利于操作。从而为空间细胞培养研究提供了一种新的技术手段。
Resumo:
Secondary organic aerosol (SOA) is produced in the atmosphere by oxidation of volatile organic compounds. Laboratory chambers are used understand the formation mechanisms and evolution of SOA formed under controlled conditions. This thesis presents studies of SOA formed from anthropogenic and biogenic precursors and discusses the effects of chamber walls on suspended vapors and particles.
During a chamber experiment, suspended vapors and particles can interact with the chamber walls. Particle wall loss is relatively well-understood, but vapor wall losses have received little study. Vapor wall loss of 2,3-epoxy-1,4-butanediol (BEPOX) and glyoxal was identified, quantified, and found to depend on chamber age and relative humidity.
Particles reside in the atmosphere for a week or more and can evolve chemically during that time period, a process termed aging. Simulating aging in laboratory chambers has proven to be challenging. A protocol was developed to extend the duration of a chamber experiment to 36 h of oxidation and was used to evaluate aging of SOA produced from m-xylene. Total SOA mass concentration increased and then decreased with increasing photooxidation suggesting a transition from functionalization to fragmentation chemistry driven by photochemical processes. SOA oxidation, measured as the bulk particle elemental oxygen-to-carbon ratio and fraction of organic mass at m/z 44, increased continuously starting after 5 h of photooxidation.
The physical state and chemical composition of an organic aerosol affect the mixing of aerosol components and its interactions with condensing species. A laboratory chamber protocol was developed to evaluate the mixing of SOA produced sequentially from two different sources by heating the chamber to induce particle evaporation. Using this protocol, SOA produced from toluene was found to be less volatile than that produced from a-pinene. When the two types of SOA were formed sequentially, the evaporation behavior most closely represented that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA particles resembles a core of SOA from the first precursor coated by a layer of SOA from the second precursor, indicative of limiting mixing.
Resumo:
Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.
A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.
A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.
Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.
The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.
Resumo:
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.
Resumo:
In this study, optimization of operational conditions of a submerged membrane bioreactor treating municipal waste-water was studied. Mixed liquid suspended solid (MLSS), membrane flux (J(v)), aeration (Q), ratio of pumping, time to break time (t(p)/t(b)), and ratio of up flow area to down flow area (A Ad) were chosen as the easily manipulable parameters to study their effects on removal efficiency and membrane fouling. Totally, 16 different runs were designed to compare and select the best combination of the 5 parameters. The results showed that the optimal operational conditions were MLSS = 7g(.)L(-1), J(v) = 10L(.)m(-2.)h(-1), Q = 6 m(3.)h(-1), t(p)/t(b)= 4 min/1 min, and A(r)/A(d) = 1.7 m(2)/m(2). Under such conditions, the SMBR could achieve a double win of high removal efficiency and low membrane fouling.
Resumo:
A strain of microalgae (Anabaena siamensis) had been cultured in a miniaturized bioreactor during a retrievable satellite flight for 15 days. By means of remote sensing equipment installed in the satellite, we gained the growth curve of microalgae population in space every day in real time. The curve indicated that the growth of microalgae in space was slower than the control on ground. Inoculation of the retrieved microalgae culture showed that the growth rate was distinctively higher than ground control. But after several generations, both cultures indicated similar growth rates. Those data showed that algae, can adapt to space environment easily which may be valuable for designing more complex bioreactor and controlled ecological life support system in future experiment. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A human acidic fibroblast growth factor gene, hafgf, was successfully transferred into Laminaria japonica (kelp) gametophytes via microprojectile bombardment using the biolistic PDS-1000/He gene gun. Following phosphinothricin screening, PCR detection and Southern blot analysis, transgenic L. japonica gametophytes were cultivated in an illuminated bubble-column bioreactor to optimize growth conditions. A maximal final dry cell density of 1,695 mg l(-1) was obtained in a batch culture having an initial dry cell density of 129.75 mg l(-1). This was achieved using an aeration rate of 1.08 l air min(-1) l(-1) culture in a medium containing 1.5 mM inorganic nitrate and 0.15 mM phosphate. In addition, the relationship between different nitrogen sources and growth of transgenic gametophytes indicated that both urea and sodium nitrate were effective nitrogen sources for cell growth, while ammonium ions inhibited growth of these gametophytes.
Resumo:
Fluctuating light intensity had a more significant impact on growth of gametophytes of transgenic Laminaria japonica in a 2500 ml bubble-column bioreactor than constant light intensity. A fluctuating light intensity between 10 and 110 mu E m(-2) s(-1), with a photoperiod of 14 h:10 h light:dark, was the best regime for growth giving 1430 mg biomass l(-1).
Resumo:
The past decade has seen the genetic engineering of various types of seaweed. To date, genetic transformation studies have been carried out in several seaweeds, including the red seaweeds Porphyra, Gracilaria, Grateloupia, Kappaphyclus and Ceramium and the green seaweed Ulva. A genetic transformation model system has been established in the most commonly cultivated seaweed, the brown seaweed Laminaria japonica (kelp), based on the transfer of technology used in land plant transformation and also by modulating the seaweed life cycle. This model showed the potential for application of transgenic kelp to the production of valuable products and an indoor cultivation system for transgenic kelp was proposed, taking into account necessary factors for bio-safety. In this review, the establishment at use of the kelp transformation model is introduced, highlighting the potential for transforming kelp into a marine bioreactor.
Resumo:
Batch cultivation for transgenic kelp gametophyte cells was investigated in an online controlled 5 L stirred-tank photo-bioreactor to rapidly optimize the process conditions by monitoring the rate of increase of pH. The transgenic kelp gametophytes with heterologous gene encoding hepatitis B surface antigen (HBsAg) could rapidly grow in the bioreactor. Optimal temperature and agitation rate for bioreactor cultivation of gametophytes were 15 degrees C and 200 rpm. Optimal incident light intensities depended on the initial cell densities. (c) 2006 Elsevier B.V. All fights reserved.