102 resultados para bioproducts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is primarily concerned with the enzyme- catalysed synthesis of sulfoxides using reductase and dioxygenase enzymes. Chapter 1 provides an introduction to the topic of redox chemistry with particular emphasis on the application of reductase and dioxygenase enzymes in organosulfur chemistry. Earlier literature methods for the production of enantiopure sulfoxides are reviewed. A brief discussion of the methods used for the determination of enantiomeric excess and absolute configuration is provided. Chapter 2 contains results obtained using a range of whole-cell bacteria each using a dimethyl sulfoxide reductase enzyme. The synthesis of a series of racemic sulfoxides and the development of appropriate CSPHPLC analytical methods is discussed. Kinetic resolutions of a series of sulfoxides have been achieved. Chapter 3 contains a presentation of results using dioxygenase enzymes as biocatalysts for the asymmetric sulfoxidation of dialkyl sulfoxides including thioacetal sulfoxides. A new range of monosulfoxides, cis-dihydrodiols and cis- dihydrodiol sulfoxides have been isolated in enantiopure form. Chapter 4 is focussed on the application of chiral sulfoxides in synthesis. A new chemoenzymatic route to diol sulfoxide enantiomers and the derived enantiopure phenols and catechols is discussed. The application of chemically synthesised sulfoxide enantiomers in the production of hydroxy sulfoxides is reported. Chapter 5 provides a full experimental section where the synthesis of sulfides and racemic sulfoxides is included. The methods used in the isolation and characterisation of bioproducts from the biotransformation are discussed and full experimental details given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Together with 106 farmers who started growing Jatropha (Jatropha curcas L.) in 20042006, this research sought to increase the knowledge around the real-life experience of Jatropha farming in the southern India states of Tamil Nadu and Andhra Pradesh. Launched as an alternative for diesel in India, Jatropha has been promoted as a non-edible plant that could grow on poor soils, yield oil-rich seeds for production of bio-diesel, and not compete directly with food production. Through interviews with the farmers, information was gathered regarding their socio-economic situation, the implementation and performance of their Jatropha plantations, and their reasons for continuing or discontinuing Jatropha cultivation. Results reveal that 82% of the farmers had substituted former cropland for their Jatropha cultivation. By 2010, 85% (n = 90) of the farmers who cultivated Jatropha in 2004 had stopped. Cultivating the crop did not give the economic returns the farmers anticipated, mainly due to a lack of information about the crop and its maintenance during cultivation and due to water scarcity. A majority of the farmers irrigated and applied fertilizer, and even pesticides. Many problems experienced by the farmers were due to limited knowledge about cultivating Jatropha caused by poor planning and implementation of the national Jatropha program. Extension services, subsidies, and other support were not provided as promised. The farmers who continued cultivation had means of income other than Jatropha and held hopes of a future Jatropha market. The lack of market structures, such as purchase agreements and buyers, as well as a low retail price for the seeds, were frequently stated as barriers to Jatropha cultivation. For Jatropha biodiesel to perform well, efforts are needed to improve yield levels and stability through genetic improvements and drought tolerance, as well as agriculture extension services to support adoption of the crop. Government programs will -probably be more effective if implementing biodiesel production is conjoined with stimulating the demand for Jatropha biodiesel. To avoid food-biofuel competition, additional measures may be needed such as land-use restrictions for Jatropha producers and taxes on biofuels or biofuel feedstocks to improve the competitiveness of the food sector compared to the bioenergy sector. (c) 2012 Society of Chemical Industry and John Wiley & Sons, Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the dawn of civilization, natural resources have remained the mainstay of various remedial approaches of humans vis-a-vis a large number of illnesses. Saraca asoca (Roxb.) de Wilde (Saraca indica L.) belonging to the family Caesalpiniaceae has been regarded as a universal panacea in old Indian Ayurvedic texts and has especially been used to manage gynaecological complications and infections besides treating haemmorhagic dysentery, uterine pain, bacterial infections, skin problems, tumours, worm infestations, cardiac and circulatory problems. Almost all parts of the plant are considered pharmacologically valuable. Extensive folkloric practices and ethnobotanical applications of this plant have even lead to the availability of several commercial S. asoca formulations recommended for different indications though adulteration of these remains a pressing concern. Though a wealth of knowledge on this plant is available in both the classical and modern literature, extensive research on its phytomedicinal worth using state-of-the-art tools and methodologies is lacking. Recent reports on bioprospecting of S. asoca endophytic fungi for industrial bioproducts and useful pharmacologically relevant metabolites provide a silver lining to uncover single molecular bio-effectors from its endophytes. Here, we describe socio-ethnobotanical usage, present the current pharmacological status and discuss potential bottlenecks in harnessing the proclaimed phytomedicinal worth of this prescribed Ayurvedic medicinal plant. Finally, we also look into the possible future of the drug discovery and pharmaceutical R&D efforts directed at exploring its pharma legacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

280 p. : il.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of 2-, 3- and 4-substituted pyridines was metabolised using the mutant soil bacterium Pseudomonas putida UV4 which contains a toluene dioxygenase (TDO) enzyme. The regioselectivity of the biotransformation in each case was determined by the position of the substituent. 4-Alkylpyridines were hydroxylated exclusively on the ring to give the corresponding 4-substituted 3-hydroxypyridines, while 3-alkylpyridines were hydroxylated stereoselectively on C-1 of the alkyl group with no evidence of ring hydroxylation. 2-Alkylpyridines gave both ring and side-chain hydroxylation products. Choro- and bromo-substituted pyridines, and pyridine itself, while being poor substrates for P. putida UV4, were converted to some extent to the corresponding 3-hydroxypyridines. These unoptimised biotransformations are rare examples of the direct enzyme-catalysed oxidation of pyridine rings and provide a novel synthetic method for the preparation of substituted pyridinols. Evidence for the involvement of the same TDO enzyme in both ring and side-chain hydroxylation pathways was obtained using a recombinant strain of Escherichia coli (pKST11) containing a cloned gene for TDO. The observed stereoselectivity of the side-chain hydroxylation process in P. putida UV4 was complicated by the action of an alcohol dehydrogenase enzyme in the organism which slowly leads to epimerisation of the initial (R)-alcohol bioproducts by dehydrogenation to the corresponding ketones followed by stereoselective reduction to the (S)-alcohols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotransformations of a series of ortho-, meta- and para-substituted ethylbenzene and propylbenzene substrates have been carried out, using Pseudomonas putida UV4, a source of toluene dioxygenase (TDO). The ortho- and para-substituted alkylbenzene substrates yielded, exclusively, the corresponding enantiopure cis-dihydrodiols of the same absolute configuration. However, the meta isomers, generally, gave benzylic alcohol bioproducts, in addition to the cis-dihydrodiols (the meta effect). The benzylic alcohols were of identical (R) absolute configuration but enantiomeric excess values were variable. The similar (2R) absolute configurations of the cis-dihydrodiols are consistent with both the ethyl and propyl groups having dominant stereodirecting effects over the other substituents. The model used earlier, to predict the regio- and stereo-chemistry of cis-dihydrodiol bioproducts derived from substituted benzene substrates has been refined, to take account of non-symmetric subsituents like ethyl or propyl groups. The formation of benzylic hydroxylation products, from meta-substituted benzene substrates, without further cis-dihydroxylation to yield triols provides a further example of the meta effect during toluene dioxygenase-catalysed oxidations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toluene dioxygenase (TDO)-catalysed monooxygenation of methylsulfanylmethyl phenyl sulfide 1 and methylsulfanylmethyl 2-pyridyl sulfide 4, using whole cells of Pseudomonas putida UV4, occurred exclusively at the alkyl aryl sulfur centre to yield the alkyl aryl sulfoxides 2 and 5 respectively. These sulfoxides, accompanied by the dialkyl sulfoxides 3 and 6, were also obtained from naphthalene dioxygenase (NDO)-catalysed sulfoxidation of thioacetals 1 and 4 using intact cells of P. putida NCIMB 8859. Enzymatic oxidation of methyl benzyl sulfide 7, 2-phenyl-1,3-dithiane 19, and 2-phenyl-1,3-dithiolane 23, using TDO, gave the corresponding dialkyl sulfoxides 8, 20 and 24 as minor bioproducts. TDO-catalysed dioxygenation of the alkyl benzyl sulfides 7, 15 and 17 and the thioacetals 19 and 23, with P. putida UV4, yielded the corresponding enantiopure cis-dihydrodiols 9, 16, 18, 21 and 25 as major metabolites and cis-dihydrodiol sulfoxides 14, 22 and 26 as minor metabolites, resulting from a tandem trioxygenation of substrates 7, 19 and 23 respectively. Chemical oxidation, of the enantiopure cis-dihydrodiol sulfides 9, 16, 18 and 21 with dimethyldioxirane (DMD), gave separable mixtures of the corresponding pairs of cis-dihydrodiol sulfoxide diastereoisomers 14 and 27, 28 and 29, 30 and 31, 22 and 32. While dialkyl sulfoxide bioproducts 3, 6, 20 and 24 were of variable enantiopurity (27-greater than or equal to 98% ee), alkyl aryl monosulfoxides 2 and 5, cis-dihydrodiols 9, 16, 18, 21 and 25 and cis-dihydrodiol sulfoxide bioproducts 14, 22 and 26 were all single enantiomers (greater than or equal to 98% ee). The absolute configurations of the products, obtained from enzyme-catalysed (TDO and NDO) and chemical (DMD) oxidation methods, were determined by stereochemical correlation, circular dichroism, and X-ray crystallographic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aromatic dioxygenases have been found to catalyse single and tandem oxidation reactions of conjugated polyenes. Rational selection and design of dioxygenases, allied to substrate shape, size and substitution pattern, has been used to control regiochemistry and stereochemistry during the oxygenation process. The resulting enantiopure bioproducts have been increasingly utilised as precursors for new and alternative routes in chiral synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toluene dioxygenase (TDO)-catalysed benzylic hydroxylation of indene substrates (8, 16 and 17), using whole cell cultures of Pseudomonas putida UV4, was found to yield inden-1-ol (14 and 22) and indan-1-one bioproducts (15 and 23). The formation of these bioproducts is consistent with the involvement of carbon-centred radical intermediates. TDO-catalysed oxidation of indenes 8 and 16 also gave cis-diols 13 and 18 respectively. TDO and naphthalene dioxygenase (NDO), used as both whole-cell preparations and as purified enzymes, were found to catalyse the benzylic hydroxylation of chromane 30, deuteriated (+/-)-chromane 30(D) and enantiomers (4S)-30(D) and (4R)-30(D) to yield (4R)- and (4S)-chroman-4-ols 31/31(D) respectively. The mechanism of benzylic hydroxylation of chromane 30/30(D) involves the stereoselective abstraction of a pro-R (with TDO) or a pro-S (with NDO) hydrogen atom at C-4 and a marked preference for retention of configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The potential variance in feedstock costs can have signifi cant implications for the cost of a biofuel and the fi nancial viability of a biofuel facility. This paper employs the Grange Feed Costing Model to assess the cost of on-farm biomethane production using grass silages produced under a range of management scenarios. These costs were compared with the cost of wheat grain and sugarbeet roots for ethanol production at an industrial scale. Of the three feedstocks examined, grass silage represents the cheapest feedstock per GJ of biofuel produced. At a production cost of €27/tonne (t) feedstock (or €150/t volatile solids (VS)), the feedstock production cost of grass silage per gigajoule (GJ) of biofuel (€12.27) is lower than that of sugarbeet (€16.82) and wheat grain (€18.61). Grass biomethane is also the cheapest biofuel when grass silage is costed at the bottom quartile purchase price of silage of €19/t (€93/t VS). However, when considering the production costs (full-costing) of the three feedstocks, the total cost of grass biomethane (€32.37/GJ of biofuel; intensive 2-cut system) from a small on-farm facility ranks between that of sugarbeet (€29.62) and wheat grain ethanol (€34.31) produced in large industrial facilities. The feedstock costs for the above three biofuels represent 0.38, 0.57, and 0.54 of the total biofuel cost. The importance of feedstock cost on biofuel cost is further highlighted by the 0.43 increase in the cost of biomethane when grass silage is priced at the top quartile (€46/t or €232/t VS) compared to the bottom quartile purchase price.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cis-Dihydroxylation of meta-substituted phenol (m-phenol) substrates, to yield the corresponding cyclohexenone cis-diol metabolites, was catalysed by arene dioxygenases present in mutant and recombinant bacterial strains. The presence of cyclohexenone cis-diol metabolites and several of their cyclohexene and cyclohexane cis-triol derivatives was detected by LC-TOFMS analysis and confirmed by NMR spectroscopy. Structural and stereochemical analyses of chiral ketodiol bioproducts, was carried out using NMR and CD spectroscopy and stereochemical correlation methods. The formation of enantiopure cyclohexenone cis-diol metabolites is discussed in the context of postulated binding interactions of the m-phenol substrates at the active site of toluene dioxygenase (TDO).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grass biomethane surpasses the 60% greenhouse gas (GHG) savings relative to the fossil fuel replaced required by EU Directive 2009/28/EC. However, there are growing concerns that when the indirect effects of biofuels are taken into account, GHG savings may become negative. There has been no research to date into the indirect effects of grass biomethane; this paper aims to fill that knowledge gap. A causal-descriptive assessment is carried out and identifies the likely indirect effect of a grass biomethane industry in Ireland as a reduction in beef exports to the UK. Three main scenarios are then analyzed: an increase in indigenous UK beef production, an increase in beef imported to the UK from other countries (EU, New Zealand and Brazil), and a decrease in beef consumption leading to increased poultry consumption. The GHG emissions from each of these scenarios are determined and the resulting savings relative to fossil diesel vary between -636% and 102%. The significance of the findings is then discussed. It is the view of the authors that, while consideration of indirect effects is important, an Irish grass biomethane industry cannot be held accountable for the associated emissions. A global GHG accounting system is therefore proposed; however, the difficulty of implementing such a system is acknowledged, as is its probable ineffectualness. Such a system would not treat the source of the problem - rising consumption. The authors conclude that the most effective method of combating the indirect effects of biofuels is a reduction in general consumption. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd.