995 resultados para biomineralization, mineralization, calcite, particle growth
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development of nanostructured materials have aroused great interest of the industries all over the country, since they enable the development of devices that can be used as gate insulators on silicon transistors, electrochromic devices, solid electrolyte oxygen sensors and as a photoluminescent materials . In this project, it is proposed to investigate the optical properties of CeO2 modified with rare earth Er processed in hydrothermal-microwave. The synthesis of one-dimensional nanostructures (1D) was measured from dilute aqueous solutions of acids and salts of starting reagents in the presence of chemical basis, after these aqueous solutions were processed on hydrothermal-microwave to particle growth. The particles obtained after processing were characterized by X-ray Diffraction, Rietveld Analysis and Raman Spectroscopy. The particle morphology was observed by scanning electron microscopy with field emission gun. The synthesis of 1D nanostructures are evaluated for different surfactants and starting precursors (ceria different salts), pH, temperature and pressure which can modify the morphology of the nanostructures. Combining laboratory experiments and theoretical calculations it was desired to understand the organization of the nanoparticles and their resulting structure. Strict control of chemical homogeneity, crystal structure, microstructure and interaction of the CeO2 cluster with different surfactants using the Hartree-Fock method, was intended to obtain properties compatible with their use in catalysts and optical devices. The use of mineralizer agent KOH and 8 minutes of processing time synthesis conditions were chosen to evaluate the effect of Er dopant. It has been proved that this doping with rare earth increases the photoluminescent properties of the compound obtained without change the structural and morphological propreties of ceria
Resumo:
The development of nanostructured materials have aroused great interest of the industries all over the country, since they enable the development of devices that can be used as gate insulators on silicon transistors, electrochromic devices, solid electrolyte oxygen sensors and as a photoluminescent materials . In this project, it is proposed to investigate the optical properties of CeO2 modified with rare earth Er processed in hydrothermal-microwave. The synthesis of one-dimensional nanostructures (1D) was measured from dilute aqueous solutions of acids and salts of starting reagents in the presence of chemical basis, after these aqueous solutions were processed on hydrothermal-microwave to particle growth. The particles obtained after processing were characterized by X-ray Diffraction, Rietveld Analysis and Raman Spectroscopy. The particle morphology was observed by scanning electron microscopy with field emission gun. The synthesis of 1D nanostructures are evaluated for different surfactants and starting precursors (ceria different salts), pH, temperature and pressure which can modify the morphology of the nanostructures. Combining laboratory experiments and theoretical calculations it was desired to understand the organization of the nanoparticles and their resulting structure. Strict control of chemical homogeneity, crystal structure, microstructure and interaction of the CeO2 cluster with different surfactants using the Hartree-Fock method, was intended to obtain properties compatible with their use in catalysts and optical devices. The use of mineralizer agent KOH and 8 minutes of processing time synthesis conditions were chosen to evaluate the effect of Er dopant. It has been proved that this doping with rare earth increases the photoluminescent properties of the compound obtained without change the structural and morphological propreties of ceria
Resumo:
The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.
Resumo:
The structural evolution of a Pd/C catalyst during the liquid phase selective aerobic oxidation of cinnamyl alcohol has been followed by in situ XAFS and XPS. The fresh catalyst comprised highly dispersed, heavily oxidised Pd particles. Cinnamyl alcohol oxidation resulted in the rapid reduction of surface palladium oxide and a small degree of concomitant particle growth. These structural changes coincided with a large drop in catalytic activity. Prereduced Pd/C exhibited a significantly lower initial oxidation rate demonstrating the importance of surface metal oxide in effecting catalytic oxidation. Use of a Pd black model system confirmed that the oxide→metal transformation was the cause, and not result, of catalyst deactivation.
Resumo:
Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature-induced grain coarsening. Despite this large-scale trend, a considerable grain size scatter occurs on the outcrop-scale indicating local influence of second-order effects such as thermal perturbations, fluid flow and second-phase particles. Second-phase particles, whose sizes range from nano- to the micron-scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron-scale second-phase particles, or to samples containing a large number of nano-scale particles. The obtained data set suggests that the second phases induce a temperature-controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D 1⁄4 C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second-phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian-type distributions of the pure samples. In contrast, fluid-enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable d18O and d13C isotope ratios in fluid-affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid-induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1.To summarize, considerable grain size variations of up to one order of magnitude can locally result from second-order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.
Resumo:
Calcitic belemnite rostra are usually employed to perform paleoenvironmental studies based on geochemical data. However, several questions, such as their original porosity and microstructure, remain open, despite they are essential to make accurate interpretations based on geochemical analyses.This paper revisits and enlightens some of these questions. Petrographic data demonstrate that calcite crystals of the rostrum solidum of belemnites grow from spherulites that successively develop along the apical line, resulting in a “regular spherulithic prismatic” microstructure. Radially arranged calcite crystals emerge and diverge from the spherulites: towards the apex, crystals grow until a new spherulite is formed; towards the external walls of the rostrum, the crystals become progressively bigger and prismatic. Adjacent crystals slightly vary in their c-axis orientation, resulting in undulose extinction. Concentric growth layering develops at different scales and is superimposed and traversed by a radial pattern, which results in the micro-fibrous texture that is observed in the calcite crystals in the rostra.Petrographic data demonstrate that single calcite crystals in the rostra have a composite nature, which strongly suggests that the belemnite rostra were originally porous. Single crystals consistently comprise two distinct zones or sectors in optical continuity: 1) the inner zone is fluorescent, has relatively low optical relief under transmitted light (TL) microscopy, a dark-grey color under backscatter electron microscopy (BSEM), a commonly triangular shape, a “patchy” appearance and relatively high Mg and Na contents; 2) the outer sector is non-fluorescent, has relatively high optical relief under TL, a light-grey color under BSEM and low Mg and Na contents. The inner and fluorescent sectors are interpreted to have formed first as a product of biologically controlled mineralization during belemnite skeletal growth and the non-fluorescent outer sectors as overgrowths of the former, filling the intra- and inter-crystalline porosity. This question has important implications for making paleoenvironmental and/or paleoclimatic interpretations based on geochemical analyses of belemnite rostra.Finally, the petrographic features of composite calcite crystals in the rostra also suggest the non-classical crystallization of belemnite rostra, as previously suggested by other authors.
Resumo:
A new dynamic model of dolomitization predicts a multitude of textural, paragenetic, geochemical and other properties of burial dolomites. The model is based on two postulates, (1) that the dolomitizing brine is Mg-rich but under saturated with both calcite and dolomite, and (2) that the dolomite-for-calcite replacement happens not by dissolution-precipitation as usually assumed, but by dolomite-growth-driven pressure solution of the calcite host. Crucially, the dolomite-for-calcite replacement turns out to be self-accelerating via Ca2 : the Ca2 released by each replacement increment accelerates the rate of the next, and so on. As a result, both pore-fluid Ca2 and replacement rate grow exponentially.
Resumo:
Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
RésuméLes champignons sont impliqués dans les cycles biogéochimiques de différentes manières. En particulier, ils sont reconnus en tant qu'acteurs clés dans la dégradation de la matière organique, comme fournisseurs d'éléments nutritifs via l'altération des minéraux mais aussi comme grands producteurs d'acide oxalique et de complexes oxalo-métalliques. Toutefois, peu de choses sont connues quant à leur contribution à la genèse d'autres types de minéraux, tel que le carbonate de calcium (CaCO3). Le CaCO3 est un minéral ubiquiste dans de nombreux écosystèmes et il joue un rôle essentiel dans les cycles biogéochimiques du carbone (C) et du calcium (Ca). Le CaCO3 peut être d'origine physico-chimique ou biogénique et de nombreux organismes sont connus pour contrôler ou induire sa biominéralisation. Les champignons ont souvent été soupçonnés d'être impliqué dans ce processus, cependant il existe très peu d'informations pour étayer cette hypothèse.Cette thèse a eu pour but l'étude de cet aspect négligé de l'impact des champignons dans les cycles biogéochimiques, par l'exploration de leur implication potentielle dans la formation d'un type particulier de CaCO3 secondaires observés dans les sols et dans les grottes des environnements calcaires. Dans les grottes, ces dépôts sont appelés moonmilk, alors que dans les sols on les appelle calcite en aiguilles. Cependant ces deux descriptions correspondent en fait au même assemblage microscopique de deux habitus particulier de la calcite: la calcite en aiguilles (au sens strict du terme cette fois-ci) et les nanofibres. Ces deux éléments sont des habitus aciculaires de la calcite, mais présentent des dimensions différentes. Leur origine, physico-chimique ou biologique, est l'objet de débats intenses depuis plusieurs années déjà.L'observation d'échantillons environnementaux avec des techniques de microscopie (microscopie électronique et micromorphologie), ainsi que de la microanalyse EDX, ont démontré plusieurs relations intéressantes entre la calcite en aiguilles, les nanofibres et des éléments organiques. Premièrement, il est montré que les nanofibres peuvent être organiques ou minérales. Deuxièmement, la calcite en aiguilles et les nanofibres présentent de fortes analogies avec des structures hyphales, ce qui permet de confirmer l'hypothèse de leur origine fongique. En outre, des expériences en laboratoire ont confirmé l'origine fongique des nanofibres, par des digestions enzymatiques d'hyphes fongiques. En effet, des structures à base de nanofibres, similaires à celles observées dans des échantillons naturels, ont pu être produites par cette approche. Finalement, des enrichissements en calcium ont été mesurés dans les parois des hyphes et dans des inclusions intrahyphales provenant d'échantillons naturels de rhizomorphes. Ces résultats suggèrent une implication de la séquestration de calcium dans la formation de la calcite en aiguilles et/ou des nanofibres.Plusieurs aspects restent à élucider, en particulier la compréhension des processus physiologiques impliqués dans la nucléation de calcite dans les hyphes fongiques. Cependant, les résultats obtenus dans cette thèse ont permis de confirmer l'implication des champignons dans la formation de la calcite en aiguilles et des nanofibres. Ces découvertes sont d'une grande importance dans les cycles biogéochimiques puisqu'ils apportent de nouveaux éléments dans le cycle couplé C-Ca. Classiquement, les champignons sont considérés comme étant impliqués principalement dans la minéralisation de la matière organique et dans l'altération minérale. Cette étude démontre que les champignons doivent aussi être pris en compte en tant qu'agents majeurs de la genèse de minéraux, en particulier de CaCO3. Ceci représente une toute nouvelle perspective en géomycologie quant à la participation des champignons au cycle biologique du C. En effet, la présence de ces précipitations de CaCO3 secondaires représente un court-circuit dans le cycle biologique du C puisque du C inorganique du sol se retrouve piégé dans de la calcite plutôt que d'être retourné dans l'atmosphère.AbstractFungi are known to be involved in biogeochemical cycles in numerous ways. In particular, they are recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of oxalic acid and metal-oxalate. However, little is known about their contribution to the genesis of other types of minerals such as calcium carbonate (CaCO3). Yet, CaC03 are ubiquitous minerals in many ecosystems and play an essential role in the biogeochemical cycles of both carbon (C) and calcium (Ca). CaC03 may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce calcite biomineralization. While fungi have often been suspected to be involved in this process, only scarce information support this hypothesis.This Ph.D. thesis aims at investigating this disregarded aspect of fungal impact on biogeochemical cycles by exploring their possible implication in the formation of a particular type of secondary CaC03 deposit ubiquitously observed in soils and caves from calcareous environments. In caves, these deposits are known as moonmilk, whereas in soils, they are known as Needle Fibre Calcite (NFC - sensu lato). However, they both correspond to the same microscopic assemblage of two distinct and unusual habits of calcite: NFC {sensu stricto) and nanofibres. Both features are acicular habits of calcite displaying different dimensions. Whether these habits are physicochemical or biogenic in origin has been under discussion for a long time.Observations of natural samples using microscopic techniques (electron microscopy and micromorphology) and EDX microanalyses have demonstrated several interesting relationships between NFC, nanofibres, and organic features. First, it has shown that nanofibres can be either organic or minera! in nature. Second, both nanofibres and NFC display strong structural analogies with fungal hyphal features, supporting their fungal origin. Furthermore, laboratory experiments have confirmed the fungal origin of nanofibres through an enzymatic digestion of fungal hyphae. Indeed, structures made of nanofibres with similar features as those observed in natural samples have been produced. Finally, calcium enrichments have been measured in both cell walls and intrahyphal inclusions of hyphae from rhizomorphs sampled in the natural environment. These results point out an involvement of calcium sequestration in nanofibres and/or NFC genesis.Several aspects need further investigation, in particular the understanding of the physiological processes involved in hyphal calcite nucleation. However, the results obtained during this study have allowed the confirmation of the implication of fungi in the formation of both NFC and nanofibres. These findings are of great importance regarding global biogeochemical cycles as they bring new insights into the coupled C and Ca cycles. Conventionally, fungi are considered to be involved in organic matter mineralization and mineral weathering. In this study, we demonstrate that they must also be considered as major agents in mineral genesis, in particular CaC03. This is a completely new perspective in geomycology regarding the role of fungi in the short-term (or biological) C cycle. Indeed, the presence of these secondary CaC03 precipitations represents a bypass in the short- term carbon cycle, as soil inorganic C is not readily returned to the atmosphere.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.