974 resultados para biomass gasification


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conversion of agricultural biomass such as wood chips, wheat straw and forest residue for the production of fuels can help in reducing GHG emissions since they are considered as nearly carbon neutral. Around the world there is a significant amount of forest and agricultural-biomass available which could be used for the production of liquid fuels that can be blended with the petroleum-based diesel. Oxymethylene ethers (OMEs) can be derived from biomass via gasification, water-gas shift reaction and methanol production. The addition of OMEs to conventional diesel fuel has great potential to reduce soot formation during the combustion in diesel engines. Unlike methanol and dimethyl ether (DMM) which can also reduce soot formation, the physical properties of OMEs allow the use in modern diesel engines without significant change of the engines infrastructure. In this study, a detailed and data intensive process simulation model was developed to simulate all the unit operations involved in the production of OMEs from biomass. The unit operation considered include biomass drying, gasification, gas cleaning, water gas shift reaction, methanol production and OMEs synthesis. The simulation results were then utilized to conduct a detailed techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways for OMEs production. Our recent study shows that the key parameters affecting the OMEs production are equivalence ratio, H2/CO ratio and optimal air flow. Overall, the cost of production ($/liter) of OMEs from different biomass feedstock in Alberta will be determined

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wood gasification technologies to convert the biomass into fuel gas stand out. on the other hand, producing electrical energy from stationary engine is widely spread, and its application in rural communities where the electrical network doesn't exist is very required. The recovery of exhaust gases (engine) is a possibility that makes the system attractive when compared with the same components used to obtain individual heat such as electric power. This paper presents an energetic alternative to adapt a fixed bed gasifier with a compact cogeneration system in order to cover electrical and thermal demands in a rural area and showing an energy solution for small social communities using renewable fuels. Therefore, an energetic and economical analysis from a cogeneration system producing electric energy, hot and cold water, using wooden gas as fuel from a small-sized gasifier was calculated. The energy balance that includes the energy efficiency (electric generation as well as hot and cold water system; performance coefficient and the heat exchanger, among other items), was calculated. Considering the annual interest rates and the amortization periods, the costs of production of electrical energy, hot and cold water were calculated, taking into account the investment, the operation and the maintenance cost of the equipments. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this work is to develop stoichiometric equilibrium models that permit the study of parameters effect in the gasification process of a particular feedstock. In total four models were tested in order to determine the syngas composition. One of these four models, called M2, was based on the theoretical equilibrium constants modified by two correction factors determined using published experimental data. The other two models, M3 and M4 were based in correlations, while model M4 was based in correlations to determine the equilibrium constants, model M3 was based in correlations that relate the H-2, CO and CO2 content on the synthesis gas. Model M2 proved to be the more accurate and versatile among these four models, and also showed better results than some previously published models. Also a case study for the gasification of a blend of hardwood chips and glycerol at 80% and 20% respectively, was performed considering equivalence ratios form 0.3 to 0.5, moisture contents from 0%-20% and oxygen percentages in the gasification agent of 100%, 60% and 21%. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sewage sludge gasification assays were performed in an atmospheric fluidised bed reactor using air and air–steam mixtures as the gasifying agents. Dolomite, olivine and alumina are three well known tar removal catalysts used in biomass gasification processing. However, little information is available regarding their performance in sewage sludge gasification. The aim of the current study was to learn about the influence of these three catalysts in the product distribution and tar production during sewage sludge gasification. To this end, a set of assays was performed in which the temperature (750–850 °C), the in-bed catalyst content (0, 10 and 15 wt.%) and the steam–biomass ratio (SB) in the range of 0–1 were varied with a constant equivalence ratio (ER) of 0.3. The results were compared to the results from gasification without a catalyst. We show that dolomite has the highest activity in tar elimination, followed by alumina and olivine. In addition to improving tar removal, the presence of water vapour and the catalysts increased the content of H2 in the gases by nearly 60%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Numerous references can be found in scientific literature regarding biomass gasification. However, there are few works related to sludge gasification. A study of sewage sludge gasification process in a bubbling fluidised bed gasifier on a laboratory scale is here reported. The aim was to find the optimum conditions for reducing the production of tars and gain more information on the influx of different operating variables in the products resulting from the gasification of this waste. The variables studied were the equivalence ratio (ER), the steam-biomass ratio (SB) and temperature. Specifically, the ER was varied from 0.2 to 0.4, the SB from 0 to 1 and the temperature from 750 °C (1023 K) to 850 °C (1123 K). Although it was observed that tar production could be considerably reduced (up to 72%) by optimising the gasification conditions, the effect of using alumina (aluminium oxide, of proven efficacy in destroying the tar produced in biomass gasification) as primary catalyst in air and air-steam mixture tests was also verified. The results show that by adding small quantities of alumina to the bed (10% by weight of fed sludge) considerable reductions in tar production can be obtained (up to 42%) improving, at the same time, the lower heating value (LHV) of the gas and carbon conversion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study has been to enable a greater understanding of the biomass gasification process through the development and use of process and economic models. A new theoretical equilibrium model of gasification is described using the operating condition called the adiabatic carbon boundary. This represents an ideal gasifier working at the point where the carbon in the feedstock is completely gasified. The model can be used as a `target' against which the results of real gasifiers can be compared, but it does not simulate the results of real gasifiers. A second model has been developed which uses a stagewise approach in order to model fluid bed gasification, and its results have indicated that pyrolysis and the reactions of pyrolysis products play an important part in fluid bed gasifiers. Both models have been used in sensitivity analyses: the biomass moisture content and gasifying agent composition were found to have the largest effects on performance, whilst pressure and heat loss had lesser effects. Correlations have been produced to estimate the total installed capital cost of gasification systems and have been used in an economic model of gasification. This has been used in a sensitivity analysis to determine the factors which most affect the profitability of gasification. The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput. Given the economic conditions of late 1985, refuse gasification for the production of producer gas was found to be viable at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties of the United Kingdom. At this throughput and above, the largest element of product gas cost is the feedstock cost, the cost element which is most variable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis describes the design and engineering of a pressurised biomass gasification test facility. A detailed examination of the major elements within the plant has been undertaken in relation to specification of equipment, evaluation of options and final construction. The retrospective project assessment was developed from consideration of relevant literature and theoretical principles. The literature review includes a discussion on legislation and applicable design codes. From this analysis, each of the necessary equipment units was reviewed and important design decisions and procedures highlighted and explored. Particular emphasis was placed on examination of the stringent demands of the ASME VIII design codes. The inter-relationship of functional units was investigated and areas of deficiency, such as biomass feeders and gas cleaning, have been commented upon. Finally, plant costing was summarized in relation to the plant design and proposed experimental programme. The main conclusion drawn from the study is that pressurised gasification of biomass is far more difficult and expensive to support than atmospheric gasification. A number of recommendations have been made regarding future work in this area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomass tar restricts the wide application and development of biomass gasification technology. In the present paper, palygorskite, a natural magnesium-containing clay mineral, was investigated for catalytic pyrolysis of rape straw in situ and compared with the dolomite researched widely. The two types of natural minerals were characterized with XRD and BET. The results showed that combustible gas derived from the pyrolysis increased with an increase in gasification temperature. The Hconversion and Cconversion increased to 44.7% and 31% for the addition of palygorskite and increased to 41.3% and 31.3% for the addition of dolomite at the gasification temperature of 800 °C, compared with 15.1% and 5.6% without addition of the two types of material. It indicated that more biomass was converted into combustible gases implying the decrease in biomass tar under the function of palygorskite or dolomite and palygorskite had a slightly better efficiency than that of dolomite in the experimental conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study presents an analysis aimed at choosing between off-grid solar photovoltaic, biomass gasifier based power generation and conventional grid extension for remote village electrification. The model provides a relation between renewable energy systems and the economical distance limit (EDL) from the existing grid point, based on life cycle cost (LCC) analysis, where the LCC of energy for renewable energy systems and grid extension will match. The LCC of energy feed to the village is arrived at by considering grid availability and operating hours of the renewable energy systems. The EDL for the biomass gasifier system of 25 kW capacities is 10.5 km with 6 h of daily operation and grid availability. However, the EDL for a similar 25 kW capacity photovoltaic system is 35 km for the same number of hours of operation and grid availability. The analysis shows that for villages having low load demand situated far away from the existing grid line, biomass gasification based systems are more cost competitive than photovoltaic systems or even compared to grid extension. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]Este proyecto tiene como objetivo generar energía eléctrica y térmica para un conjunto de viviendas aisladas, sin acceso a la red eléctrica, con una potencia requerida de 12KW. Se pretende plantear una solución que satisfaga las necesidades básicas de auto-abastecimiento de una forma económicamente rentable. Para comenzar, por un lado de cara al objetivo 20/20/20 se realizará un acercamiento a la utilización de las energías renovables como fuente de energía, disminuyendo así el impacto ambiental. Por otro lado, se plantearán diferentes alternativas para la generación de energía eléctrica y térmica, finalmente haciendo hincapié en el estudio de una planta de gasificación de biomasa mediante astillas de madera. De modo que, a lo largo de este documento se analizarán los principios y fundamentos necesarios para el diseño de una planta de generación eléctrica mediante gasificación de biomasa. Para ello se estudiarán los diferentes modelos de gasificadores existentes, el desarrollo del proceso de gasificación con sus respectivas etapas y la limpieza y adaptación del gas obtenido antes de introducirlo en el MACI. Se realizará una descripción de la planta junto al dimensionamiento tanto del almacenamiento de la materia prima como el de los equipos a instalar. Finalmente, para valorar si se trata de un proyecto viable. Se realizará el estudio económico analizando el presupuesto y análisis de rentabilidad. Asimismo, se plantearán los diferentes riesgos a los que puede exponerse una instalación como esta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

基于BP人工神经网络原理,利用MATLAB神经网络工具箱,以实验得到的57组气化实验数据作为样本,建立了一个以加料量和送风量为输入变量,以燃气热值、产气率、碳转化率和气化效率为输出变量,用于描述连续稳定气化过程的内循环流化床生物质气化模型。对模型的隐层节点数和训练周期改变对模拟结果的影响进行了分析,发现当隐层节点数为20,训练步骤为50步,模型的4个输出变量的模拟结果与实验结果相关系数均超过0.95;同时对该模型的预测能力进行了考察,模型预测结果与实验结果吻合良好,证明了该模型具有较强的泛化能力,为生物质内循环流化床气化系统的优化设计和自动控制提供新思路。