49 resultados para biofouling
Resumo:
The main aim of this work was to study the simultaneous wear-corrosion of titanium (Ti) in the presence of biofilms composed of Streptococcus mutans and Candida albicans. Both organisms were separately grown in specific growth media, and then mixed in a medium supplemented with a high sucrose concentration. Corrosion and tribocorrosion tests were performed after 48 h and 216 h of biofilm growth. Electrochemical corrosion tests indicated a decrease in the corrosion resistance of Ti in the presence of the biofilms although the TiO2 film presented the characteristics of a compact oxide film. While the open circuit potential of Ti indicated a tendency to corrosion in the presence of the biofilms, tribocorrosion tests revealed a low friction on biofilm covered Ti. The properties of the biofilms were similar to those of the lubricant agents used to decrease the wear rate of materials. However, the pH-lowering promoted by microbial species, can lead to corrosion of Ti-based oral rehabilitation systems.
Resumo:
This work presents the proceedings of the twelfth symposium which was held at Kansas State University on April 24, 1982. Since a number of the contributions will be published in detail elsewhere, only brief reports are included here. Some of the reports describe current progress with respect to ongoing projects. Requests for further information should be directed to Dr. Peter Reilly at Iowa State University, Dr. V. G. Murphy at Colorado State University, Dr. Rakesh Bajpai at University of Missouri, Dr. Ed Clausen at University of Arkansas, Dr. L. T. Fan and Dr. L. E. Erickson at Kansas State University. ContentsA Kinetic Analysis of Oleaginous Yeast Fermentation by Candida curvata on Whey Permeate, B.D. Brown and K.H. Hsu, Iowa State University Kinetics of Biofouling in Simulated Water Distribution Systems Using CSTR, T.M. Prakash, University of Missouri Kinetics of Gas Production by C. acetobutylicum, Michael Doremus, Colorado State University Large Scale Production of Methane from Agricultural Residues, O.P. Doyle, G.C. Magruder, E.C. Clausen, and J.L. Gaddy, University of Arkansas The Optimal Process Design for Enzymatic Hydrolysis of Wheat Straw, M.M Gharpuray and L.T. Fan, Kansas State University Extractive Butanol Fermentation, Michael Sierks, Colorado State University Yields Associated with Ethyl Alcohol Production, M.D. Oner, Kansas State University Estimation of Growth Yield and Maintenance Parameters for Microbial Growth on Corn Dust, B.O. Solomon, Kansas State University Milling of Ensiled Corn, Andrzej Neryng, Iowa State University Protein Extraction from Alfalfa, Ravidranath Joshi, Colorado State University Analysis of Disaccharides by Capillary Gas Chromatography, Z.L. Nikolov, Iowa State University Characterization of High Viscosity Fermentations in Tower Fermentors, S.A. Patel and C.H. Lee, Kansas State University Utilization of Sugars in Sorghum Molasses by Clostridium acetobutylicum B. Hong, K.C. Shin, and L.T. Fan, Kansas State University
Resumo:
A wirelessly controlled magnetic microrobot has been proposed to diagnose and treat pathologies in the posterior segment of the human eye. The robot consists of a magnetic CoNi platform with a conformal coating of functional polymers. Electrodeposition has been the preferred method to fabricate and to functionalize the microrobot. Poly(pyrrole), a widely studied intrinsically conductive polymer has been investigated as a biocompatible coating to reduce biofouling, and as a coating that can release incorporated drugs on demand. The mechanism of redox cycling has been investigated to reduce the stiction of NIH 3T3 fibroblasts onto poly(pyrrole) surfaces. To demonstrate triggered drug release, Rhodamine B has been incorporated into the Ppy matrix as a model drug. Rapid Rhodamine B release is obtained when eddy current losses are induced by alternating magnetic fields on the CoNi substrates underneath these films.
Resumo:
Lack of linearity and sensitivity, oxygen dependence, biofouling and tissue inflammation hinder the development of implantable biosensors for continuous monitoring of glucose. Herein, we report the development of stacked outer membranes based on LBL/PVA hydrogels that improve sensor sensitivity, linearity, oxygen independence and counter biofouling and inflammation. While the inner LBL membrane affords tunable diffusivity, the outer PVA is capable of releasing anti-inflammatory drugs/tissue response modifying agents to counter acute and chronic inflammation, and to induce neo-angiogenesis at the implant site. Sensors were fabricated by immobilizing GOx enzyme on top of 50 μm platinum wires, followed by deposition of stacked LBL/PVA hydrogel membranes. The response of the sensors at 0.7V to various glucose concentrations was studied. Michelis-Menten analysis was performed to quantify sensor performance in terms of linearity and oxygen dependence. The interplay between sensor performance and inward glucose diffusivity was elucidated using (i) various LBL membranes and (ii) various freeze-thaw (FT) cycles of PVA. Incorporation of LBL/PVA stacked membranes resulted in an 8 fold increase in sensor linearity and a 9 fold decrease in oxygen dependence compared to controls. The enhancement in the sensor performance is attributed to (i) the oxygen storing capability of PVA hydrogel due to the formation of hydrophobic domains during its freezing/ thawing employed for its physical crosslinking and (ii) regulation of glucose flux by the inner LBL membrane. Such membranes offer significant advantages over presently available outer membranes in lieu of (i) their ability to control inflammation, (ii) their modulus that closely matches that of subcutaneous human tissue, (iii) non-necessity of reactive chemical crosslinking agents, (iv) tunable sensitivity and (v) supplemental storage of oxygen.
Resumo:
As a consequence of anthropogenic CO2-driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO3) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Omega A) for the current pCO2 level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO3 mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Omega A is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.
Resumo:
Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high CO2 levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing CO2 concentration alone (from 450 to 715 µatm) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and CO2, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high CO2 when NaOCl was also elevated. The results show that combined exposure to high CO2 and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.
Resumo:
Macroalgae, especially perennial species, are exposed to a seasonally variable fouling pressure. It was hypothesized that macroalgae regulate their antifouling defense to fouling pressure. Over one year, the macrofouling pressure and the chemical anti-macrofouling defense strength of the brown algae Fucus vesiculosus and Fucus serratus were assessed with monthly evaluation. The anti-macrofouling defense was assessed by means of surface-extracted Fucus metabolites tested at near-natural concentrations in a novel in situ bioassay. Additionally, the mannitol content of both Fucus species was determined to assess resource availability for defense production. The surface chemistry of both Fucus species exhibited seasonal variability in attractiveness to Amphibalanus improvisus and Mytilus edulis. Of this variability, 50-60% is explained by a sinusoidal model. Only F. vesiculosus extracts originating from the spring and summer significantly deterred settlement of A. improvisus. The strength of macroalgal antifouling defense did not correlate either with in situ macrofouling pressure or with measured mannitol content, which, however, were never depleted.
Resumo:
Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.
Resumo:
Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The present study describes the biofouling composition of the surface of the mangrove oyster Crassostrea rhizophorae (Guilding, 1828), cultivated in an Amazon estuary, located in the state of Pará, northern Brazil. In total, 6.124 macroinvertebrates were sampled in the months of July, August, October and December 2013. Collected epifauna was presented by five taxa (Bivalvia, Gastropoda, Polychaeta, Crustacea and Anthozoa), 20 families and 37 species. Bivalvia was the most abundant class, presenting 5.183 mussels Mytella charruana (d'Orbigny, 1842). Knowledge of biofouling composition associated to the surface cultured bivalves enables the implementation of mitigation measures to the impacts caused by this association.
Resumo:
An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called Case 1 waters. Around solar noon and almost everyday, each float acquires 0-250 m vertical profiles of Photosynthetically Available Radiation and downward irradiance at three wavelengths (380, 412 and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. Here, we present a data quality-control procedure aimed at verifying profile shapes and providing near real-time data distribution. This procedure is specifically developed to: 1) identify main issues of measurements (i.e. dark signal, atmospheric clouds, spikes and wave-focusing occurrences); 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift.
Resumo:
An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called Case 1 waters. Around solar noon and almost everyday, each float acquires 0-250 m vertical profiles of Photosynthetically Available Radiation and downward irradiance at three wavelengths (380, 412 and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. Here, we present a data quality-control procedure aimed at verifying profile shapes and providing near real-time data distribution. This procedure is specifically developed to: 1) identify main issues of measurements (i.e. dark signal, atmospheric clouds, spikes and wave-focusing occurrences); 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift.