947 resultados para bio-based nanocomposites
Resumo:
The potential replacement, partially or fully, of synthetic additives by bio-based alternatives derived from indigenous renewable non-food crop resources offers a market opportunity for a green supply of raw materials for different industrial and health products, with greater involvement of the farming community in crop production while addressing the ever more stringent environmental and pollution laws that now require the use of less potentially toxic/harmful ingredients, even if they are present in relatively small quantities. The work presented here relates to developing a new genre of environmentally-sustainable bio-based antioxidants (AO) for industrial uses that are obtained from extracts of UK-grown rosemary (Rosmarinus officinalis) plant. The performance of these AOs was tested, and their efficacy compared with some common and benchmark synthetic AOs from the same chemical class, in different products including polymers especially for packaging, as well as lubricants, cosmetics and health products. One of the main active ingredients in rosemary is Rosmarinic acid which is a water-soluble compound. This was chemically transformed into a number of ester derivatives, Rosmarinates, targeted for different applications. The parent and the modified antioxidants (the rosmarinates) were characterised and their antioxidancy were examined and tested in linear low-density polyethylene (LLDPE) and in polypropylene (PP) and compared with compounds of similar structure and with other well known synthetic antioxidants used commercially in polyolefins. The results show that antioxidants sourced from rosemary have the added benefit of being highly efficient and intrinsically more active than many synthetic and bio-based alternatives.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The quest for sustainable sources of fuels and chemicals to meet the demands of a rapidly rising global population represents one of this century's grand challenges. Biomass offers the most readily implemented, and low cost, solution for transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. Chemical processing of such biomass-derived building blocks requires catalysts compatible with hydrophilic, bulky substrates to facilitate the selective deoxygenation of highly functional bio-molecules to their target products. This chapter addresses the challenges associated with carbohydrate utilisation as a sustainable feedstock, highlighting innovations in catalyst and process design that are needed to deliver high-value chemicals from biomass-derived building blocks. © 2014 Woodhead Publishing Limited. All rights reserved.
Resumo:
Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.
Resumo:
Epoxy resins are widely used in many applications, such as paints, adhesives and matrices for composites materials, since they present the possibility to be easily and conveniently tailored in order to display a unique combination of characteristics. In literature, various examples of bio-based epoxy resins produced from a wide range of renewable sources can be found. Nevertheless, the toxicity and safety of curing agents have not been deeply investigated and it was observed that all of them still present some environmental drawback. Therefore, the development of new environmentally friendly fully bio-based epoxy systems is of great importance for designing green and sustainable materials. In this context, the present project aims at further exploring the possibility of using bio-based compounds as curing agents for epoxy resin precursors. A preliminary evaluation of several amine-based compounds demonstrated the feasibility of using Adenine as epoxy resin hardener. In order to better understand the crosslinking mechanism, the reaction of Adenine with the mono-epoxy compound Glycidyl 2-methylphenyl ether (G2MPE), was study by 1H-NMR analysis. Then Adenine was investigated as hardener of Diglycidil ether of bisphenol A (DGEBA), which is the simplest epoxy resin based on bisphenol A, in order to determine the best hardener/resin stoichiometric ratio, and evaluate the crosslinking kinetics and conversion and the final mechanical properties of the cured resin. Then, Adenine was tested as hardener of commercial epoxy resins, in particular the infusion resin Elan-tron® EC 157 (Elantas), the impregnation resin EPON™ Resin 828 (Hexion) and the bio-based resin SUPER SAP® CLR (Entropyresins). Such systems were used for the production of composites materials reinforced with chopped recycled carbon fibers and natural fibers (flax and jute). The thermo-mechanical properties of these materials have been studied in comparison with those ones of composites obtained with the same thermosetting resin reinforced with chopped virgin carbon fibers.
Resumo:
The environmental problems caused by human activity are one of the main themes of debate of the last Century. As regard plastics, the use of non-renewable sources together with the accumulation of waste in natural habitats are causing serious pollution problems. For this reason, a continuously growing interest is recorded around sustainable materials, potential candidate for the replacement of traditional recalcitrant plastics. Promising results have been obtained with biopolymers, in particular with the class of biopolyesters. Their potential biodegradability and biobased nature is particularly interesting mainly for food packaging, where the multilayer systems normally used and the contamination by organic matter create severe recycling limits. In this framework, the present research has been conducted with the aim of synthetizing, modifying and characterizing biopolymers for food packaging application. New bioplastics based on monomers derived from renewable resources were successfully synthetized by two-step melt polycondensation and chain extension reaction following the “Green chemistry” principles. Moreover, well-known biopolyesters have been modified by blending or copolymerization, both resulting effective techniques to ad hoc tune the polymer final characteristics. The materials obtained have been processed and characterized from the chemical, structural, thermal and mechanical point of view; more specific characterizations as compostability tests, surface hydrophilicity film evaluation and barrier property measurements were conducted.
Resumo:
Driven by environmental reasons and the expected depletion of crude oil, bio-based polymers are currently undergoing a renaissance in the attempt to replace fossil-based ones. The present work aims at contributing in the development of the steps that start from biomass and move to new polymeric multifunctional materials. The study focuses on two bio-based building blocks (itaconic and vanillic acids) characterized by exploitable functionalities, i.e. a lateral double bond and a substituted aromatic ring respectively, able to confer interesting properties to the final polymers. The lateral double bond of dimethyl itaconate was functionalized via thia-Michael addition reaction obtaining a thermo-stable building block that can undergo polycondensation under classical conditions of reaction. The addition of a long lateral chain allows the polymer to express antimicrobial activity against Staphylococcus aureus making it attractive for packaging and targeting antimicrobial applications. Moreover, the architecture of the homopolymer was modified by means of copolymerization with dimethyl 2,5-furandicarboxylate thus improving the rigidity and obtaining a thermo-processable material. Potential applications as thermoset or thermoplastic material have been discussed. As concerns vanillic acid, the presence of aromatic rings on the polymer backbone imparts high thermal stability, but brittle behaviour in the homopolymer. Therefore, the architecture of the polyester was successfully tuned by means of copolymerization with a flexible bio-based comonomer, i.e. ω-pentadecalactone, providing processable random copolymers. An in depth investigation of water transport mechanism has been undertaken on the synthesized polyesters. Since the copolymers present a succession of aromatic and aliphatic units, as a consequence of the chemical structure water vapor permeability interposes between polyethylene and poly(ethylene terephthalate) proving that the copolyesters are suitable for packaging applications. Moving towards a sustainable model of development, novel sustainable synthetic pathways for the eco-design of new bio-based polymeric structures with high value functionalities and different potential applications have been successfully developed.
Resumo:
La tesi riguarda lo studio di resine polimeriche derivanti da oli vegetali, impiegabili come leganti nei prodotti vernicianti per l’edilizia ed altri settori. I prodotti vernicianti plant-based sono stati confrontati con altri prodotti attualmente commercializzati, provenienti da fonti fossili. Considerata la produzione ingente dei prodotti vernicianti su base mondiale (8,31 kg/persona) sarebbe determinante impiegare delle fonti rinnovabili per garantirne una produzione sostenibile, diminuendo l’inquinamento, ritardando l’esaurimento del petrolio e riducendo le emissioni di CO2 e di conseguenza l’effetto serra ed il cambiamento climatico. Sono state trattate, quindi, alcune vie di sintesi “green” di leganti poliuretanici ed epossidici per prodotti vernicianti ad elevate prestazioni. Gli oli vegetali sono stati scelti come materie prime in quanto relativamente economici e disponibili in grandi quantità, risultando adatti per produzioni su scala industriale. Sono inoltre riportati i metodi di formulazione di uno smalto opaco bio-based per esterni (ad es. infissi e staccionate) e una vernice opaca per parquet (interni). Le formulazioni sperimentali sono state poi caratterizzate e confrontate con altri prodotti fossil-based presenti in commercio. I prodotti vernicianti sono stati sottoposti a test di brillantezza (gloss), adesione, presa di sporco, durezza, resistenza all’abrasione e resistenza chimica.
Resumo:
The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.
Resumo:
Plastics are polymers of conventional and extensive use in our day-to-day life. This is due to their light weight, adaptability to different uses and low prices. A downside of such extensive use is the environmental pollution arising from plastic production and disposal. Indeed, many commodity polymers are produced from non-renewable resources while other do not bio-degrade after their end-of-life disposal. Consequently, the ideal polymer comes from renewable raw materials and bio-degrades after its disposal, meaning that it would do little or no harm to the environment from the beginning to the end of its life cycle. In this thesis project a class of bio-based and bio-degradable co-polymers, namely poly(ester-amide)s, was investigated because of their tunable mechanical and bio-degradation properties as well as their renewable origin. Such polymers were synthetized and characterized thermically and mechanically. Furthermore, a scale-up procedure was developed and applied to one polymer and processing trials were made with the material obtained after scale-up.
Resumo:
The market for paint products with raw materials derived from renewable sources is growing rapidly in the building industry. When high performance in wet scrub resistance is required, “washable” paints are used. However, formulating products with Bio-Based raw materials generally results in a decrease in performances compared to similar products with raw materials from fossil sources. Therefore, a new formulation approach is needed to characterize polymeric binders from renewable sources and to consider the synergistic effects given by blends of polymeric binders of different origin and chemical structure. To date, the development of new formulations that imply less environmental impact is necessary if these products have to remain competitive in the marketplace. During the trainingship in IVAS S.p.A., washable paints with different PVC (Pigment Volume Concentration) were formulated and tested, evaluating whether the performance of paints with polymeric binders obtained from renewable sources was comparable to those with polymeric binders from fossil sources. The binders were chemically characterized by DSC, FT-IR and NMR analysis. Characterization tests of paints were focused on the evaluation of degree of whiteness, hiding power, dirt setting, and wet scrub resistance. Following the results obtained from the available binder combinations, it was possible to formulate two washable paints with comparable performances to those from fossil sources: paint A with 20 % of alkydic polymer and 80 % styrene/acrylic polymer and paint B with 40 % of alkydic polymer and 60 % styrene/acrylic polymer. Finally, the formulation was completed by adding the mainly Bio-Based derived additives generally used for this category of paints.
Resumo:
This review reports the preparation and characterization of bionanocomposites based on biodegradable polymers reinforced with cellulose nanocrystals (CNC) described in the literature. The outstanding potential of cellulose nanocrystals as reinforcement fillers of biodegradable polymers is presented with an emphasis on the solution casting process, which is an appropriate method to investigate the physico-chemical effects of the incorporation of CNC into the polymeric matrices. Besides solution casting, other small scale methods such as electrospinning and layer-by-layer are also covered.
Resumo:
Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro- polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 minutes. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene.