982 resultados para bio-active membrane


Relevância:

40.00% 40.00%

Publicador:

Resumo:

[Excerpt] In this work, different multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8% (PHBV8) as support, were developed aiming the development of active bio-based multilayer systems. An interlayer based on zein nanofibers with and without cinnamaldehyde were electrospun in the PHBV8 film and three multilayer systems were developed: 1) without an outer layer; 2) using a PHBV8 film as outer layer; and 3) using an alginate-based film as outer layer. Their physico-chemical properties were evaluated through: water vapour and oxygen permeabilities and colour measurements, Fourier Transform Infrared Spectroscopy (FTIR) and thermal analyses. Results showed that the presence of different outer layers affected the water vapour permeability and transparency of the multilayer films. (...)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca2+-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can a-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for a-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The membrane-bound form of mammalian aminopeptidase P (AP-P; EC 3.4. 11.9) is a mono-zinc-containing enzyme that lacks any of the typical metal binding motifs found in other zinc metalloproteases. To identify residues involved in metal binding and catalysis, sequence and structural information was used to align the sequence of porcine membrane-bound AP-P with other members of the peptidase clan MG, including Escherichia coli AP-P and methionyl aminopeptidases. Residues predicted to be critical for activity were mutated and the resultant proteins were expressed in COS-1 cells. Immunoelectrophoretic blot analysis was used to compare the levels of expression of the mutant proteins, and their ability to hydrolyze bradykinin and Gly-Pro-hydroxyPro was assessed. Asp449, Asp460, His523, Glu554, and Glu568 are predicted to serve as metal ion ligands in the active site, and mutagenesis of these residues resulted in fully glycosylated proteins that were catalytically inactive. Mutation of His429 and His532 also resulted in catalytically inactive proteins, and these residues, by analogy with E. coli AP-P, are likely to play a role in shuttling protons during catalysis. These studies indicate that mammalian membrane-bound AP-P has an active-site configuration similar to that of other members of the peptidase clan MG, which is compatible with either a dual metal ion model or a single metal ion in the active site. The latter model is consistent, however, with the known metal stoichiometry of both the membrane-bound and cytosolic forms of AP-P and with a recently proposed model for methionyl aminopeptidase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. © 2013 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organotin compounds are worldwide diffused environmental contaminants, mainly as consequence of their extensive past use as biocides in antifouling paints. In spite of law restrictions, due to unwanted effects, organotin still persist in waters, being poorly degraded, easily resuspended from sediments and bioaccumulated in exposed organisms. The widespread toxicity and the possible threat to humans, likely to be organotin-exposed through contaminated seafood, make organotin interactions with biomolecules an intriguing biochemical topic, apart from a matter of ecotoxicological concern. Among organotins, tributyltin (TBT) is long known as the most dangerous and abundant chemical species in the Mediterranean Sea. Due to its amphiphilic nature, provided by three lipophilic arms and an electrophilic tin core, TBT can be easily incorporated in biomembranes and affect their functionality. Accordingly, it is known as a membrane-active toxicant and a mitochondrial poison. Up to now the molecular action modes of TBT are still partially unclear and poorly explored in bivalve mollusks, even if the latter play a not neglectable role in the marine trophic chain and efficiently accumulate organotins. The bivalve mollusk Mytilus galloprovincialis, selected for all experiments, is widely cultivated in the Mediterranean and currently used in ecotoxicological studies. Most work of this thesis was devoted to TBT effects on mussel mitochondria, but other possible targets of TBT were also considered. A great deal of literature points out TBT as endocrine disrupter and the masculinization of female marine gastropods, the so-called imposex, currently signals environmental organotin contamination. The hormonal status of TBT-exposed mussels and the possible interaction between hormones and contaminants in modulating microsomal hydroxilases, involved in steroid hormone and organotin detoxification, were the research topics in the period spent in Barcelona (Marco Polo fellowship). The variegated experimental approach, which consisted of two exposure experiments and in vitro tests, and the choice of selected tissues of M. galloprovincialis, the midgut gland for mitochondrial and microsomal preparations for subsequent laboratory assays and the gonads for the endocrine evaluations, aimed at drawing a clarifying pattern on the molecular mechanisms involved in organotin toxicity. TBT was promptly incorporated in midgut gland mitochondria of adult mussels exposed to 0.5 and 1.0 μg/L TBT, and partially degraded to DBT. TBT incorporation was accompanied by a decrease in the mitochondrial oligomycin-sensitive Mg-ATPase activity, while the coexistent oligomycin-insensitive fraction was unaffected. Mitochondrial fatty acids showed a clear rise in n-3 polyunsaturated fatty acids after 120 hr of TBT exposure, mainly referable to an increase in 22:6 level. TBT was also shown to inhibit the ATP hydrolytic activity of the mitochondrial F1FO complex in vitro and to promote an apparent loss of oligomycin sensitivity at higher than 1.0 μM concentration. The complex dose-dependent profile of the inhibition curve lead to the hypothesis of multiple TBT binding sites. At lower than 1.0 μM TBT concentrations the non competitive enzyme inhibition by TBT was ascribed to the non covalent binding of TBT to FO subunit. On the other hand the observed drop in oligomycin sensitivity at higher than 1.0 μM TBT could be related to the onset of covalent bonds involving thiolic groups on the enzyme structure, apparently reached only at high TBT levels. The mitochondrial respiratory complexes were in vitro affected by TBT, apart from the cytocrome c oxidase which was apparently refractory to the contaminant. The most striking inhibitory effect was shown on complex I, and ascribed to possible covalent bonds of TBT with –SH groups on the enzyme complexes. This mechanism, shouldered by the progressive decrease of free cystein residues in the presence of increasing TBT concentrations, suggests that the onset of covalent tin-sulphur bonds in distinct protein structures may constitute the molecular basis of widespread TBT effects on mitochondrial complexes. Energy production disturbances, in turn affecting energy consuming mechanisms, could be involved in other cellular changes. Mussels exposed to a wide range of TBT concentrations (20 - 200 and 2000 ng/L respectively) did not show any change in testosterone and estrogen levels in mature gonads. Most hormones were in the non-biologically active esterified form both in control and in TBT-treated mussels. Probably the endocrine status of sexually mature mussels could be refractory even to high TBT doses. In mussel digestive gland the high biological variability of microsomal 7-benzyloxy-4-trifluoromethylcoumarin-O-Debenzyloxylase (BFCOD) activity, taken as a measure of CYP3A-like efficiency, probably concealed any enzyme response to TBT exposure. On the other hand the TBT-driven enhancement of BFCOD activity in vitro was once again ascribed to covalent binding to thiol groups which, in this case, would stimulate the enzyme activity. In mussels from Barcelona harbour, a highly contaminated site, the enzyme showed a decreased affinity for the 7-benzyloxy-4-trifluoromethylcoumarin (BCF) substrate with respect to mussel sampled from Ebro Delta, a non-polluted marine site. Contaminant exposure may thus alter the kinetic features of enzymes involved in detoxification mechanisms. Contaminants and steroid hormones were clearly shown to mutually interact in the modulation of detoxification mechanisms. The xenoestrogen 17α-ethylenyl estradiol (EE2) displayed a non-competitive mixed inhibition of CYP3A-like activity by a preferential bond to the free enzyme both in Barcelona harbour and Ebro Delta mussels. The possible interaction with co-present contaminants in Barcelona harbour mussels apparently lessened the formation of the ternary complex enzyme-EE2-BCF. The whole of data confirms TBT as membrane toxicant in mussels as in other species and stresses TBT covalent binding to protein thiols as a widespread mechanism of membrane-bound-enzyme activity modulation by the contaminant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We detect internal water molecules in a membrane-embedded receptor-transducer complex and demonstrate water structure changes during formation of the signaling state. Time-resolved FTIR spectroscopy reveals stimulus-induced repositioning of one or more structurally active water molecules to a significantly more hydrophobic environment in the signaling state of the sensory rhodopsin II (SRII)-transducer (HtrII) complex. These waters, distinct from bound water molecules within the SRII receptor, appear to be in the middle of the transmembrane interface region near the Tyr199(SRII)-Asn74(HtrII) hydrogen bond. We conclude that water potentially plays an important role in the SRII --> HtrII signal transfer mechanism in the membrane's hydrophobic core.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the current study, the relationship between current and biomass and bio-adhesion mechanism of electrogenic biofilm on electrode were investigated using EQCM and ATR-SEIRAS linking electrochemistry. The results indicated that cellular biomass of biofilm on QCM-crystal surface showed maximum value of 6.0 μg/cm2 in initial batch and 11.5 μg/cm2 in the second batch on mature biofilm, producing a similar maximum current density of 110 μA/μg. Especially, the optimum cell biomass linking high electricity production ratio (110 μA/μg) occurred before maximum biomass coming, implying that over-growth mature biofilm is not an optimum state for enhancing power output of MFCs. On the other hand, the spectra using ATR-SEIRAS technique linking electrochemistry obviously exhibited water structure adsorption change at early biofilm formation and meanwhile the water adsorption accompanied the adsorbed bacteria and the bound cells population on the electrode increased with time. Meanwhile, the direct contact of bacteria and electrode via outer-membrane protein can be confirmed via a series spectra shift at amide I and amide II modes and water movement from negative bands displacing by adsorbed bacteria. Our study provided supplementary information about the interaction between the microbes and electrode beyond traditional electrochemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objectives of this dissertation were: (i) to develop experimental and analytical procedures to quantify different physico-chemical properties of the ultra-thin (~ 100 nm) active layers of reverse osmosis (RO) and nanofiltration (NF) membranes and their interactions with contaminants; (ii) to use such procedures to evaluate the similarities and differences between the active layers of different RO/NF membranes; and (iii) to relate characterization results to membrane performance. Such objectives were motivated by the current limited understanding of the physico-chemical properties of active layers as a result of traditional characterization techniques having limitations associated with the nanometer-scale spatial resolution required to study these ultra-thin films. Functional groups were chosen as the main active layer property of interest. Specific accomplishments of this study include the development of procedures to quantify in active layers as a function of pH: (1) the concentration of both negatively and positively ionized functional groups; (2) the stoichiometry of association between ions (i.e., barium) and ionized functional groups (i.e., carboxylate and sulfonate); and (3) the steric effects experienced by ions (i.e., barium). Conceptual and mathematical models were developed to describe experimental results. The depth heterogeneity of the active layer physico-chemical properties and interactions with contaminants studied in this dissertation was also characterized. Additionally, measured concentrations of ionized functional groups in the polyamide active layers of several commercial RO/NF membranes were used as input in a simplified RO/NF transport model to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) at different pH values based on rejection results at one pH condition. The good agreement between predicted and experimental results showed that the characterization procedures developed in this study serve as useful tools in the advancement of the understanding of the properties and structure of the active layers of RO/NF membranes, and the mechanisms of contaminant transport through them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pilocarpine is an alkaloid obtained from the leaves of Pilocarpus genus, with important pharmaceutical applications. Previous reports have investigated the production of pilocarpine by Pilocarpus microphyllus cell cultures and tried to establish the alkaloid biosynthetic route. However, the site of pilocarpine accumulation inside of the cell and its exchange to the medium culture is still unknown. Therefore, the aim of this study was to determine the intracellular accumulation of pilocarpine and characterise its transport across membranes in cell suspension cultures of P. microphyllus. Histochemical analysis and toxicity assays indicated that pilocarpine is most likely stored in the vacuoles probably to avoid cell toxicity. Assays with exogenous pilocarpine supplementation to the culture medium showed that the alkaloid is promptly uptaken but it is rapidly metabolised. Treatment with specific ABC protein transporter inhibitors and substances that disturb the activity of secondary active transporters suppressed pilocarpine uptake and release suggesting that both proteins may participate in the traffic of pilocarpine to inside and outside of the cells. As bafilomicin A1, a specific V-type ATPase inhibitor, had little effect and NH4Cl (induces membrane proton gradient dissipation) had moderate effect, while cyclosporin A and nifedipine (ABC proteins inhibitors) strongly inhibited the transport of pilocarpine, it is believed that ABC proteins play a major role in the alkaloid transport across membranes but it is not the exclusive one. Kinetic studies supported these results.