999 resultados para binding theory
Resumo:
Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.
Resumo:
The adsorption of NO on transition-metal (TM) surfaces has been widely studied by experimental and theoretical techniques; however, our atomistic understanding of the interaction of nitrogen monoxide (NO) with small TM clusters is far from satisfactory, which compromises a deep understanding of real catalyst devices. In this study, we report a density functional theory study of the adsorption properties of NO on the TM13 (TM = Rh, Pd, Ir, Pt) clusters employing the projected augmented wave method. We found that the interaction of NO with TM13 is much more complex than that for NO/TM(111). In particular, for low symmetry TM13 clusters, there is a strong rearrangement of the electronic charge density upon NO adsorption and, as a consequence, the adsorption energy shows a very complex dependence even for adsorption sites with the same local effective coordination. We found a strong enhancement of the binding energy of NO to the TM13 clusters compared with the TM(111) surfaces, as the antibonding NO states are not occupied for NO/TM13, and the general relationship based on the d-band model between adsorption energy and the center of gravity of the occupied d-states does not hold for the studied TM13 clusters, in particular, for clusters with low symmetry. In contrast with the adsorption energy trends, the geometric NO/TM13 parameters and the vibrational N-O frequencies for different coordination sites follow the same trend as for the respective TM(111) surfaces, while the changes in the frequencies between different surfaces and TM13 clusters reflect the strong NO-TM13 interaction.
Resumo:
For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (<1%) but still important in determining accurate conformational energies. Anharmonic corrections are found to be non-negligble; they do not alter the energetic ordering of isomers, but they do lower the free energies of formation of the water clusters by as much as 4 kcal/mol at 298.15 K.
Resumo:
According to the network theory antibodies may act as antigens thus generating anti-idiotypic antibodies that can function as regulators of immune responses. Designed ankyrin repeat proteins (DARPins) are a new class of binding proteins and may serve as an alternative to antibodies. Selections from large DARPin libraries against the variable regions of a murine monoclonal anti-human IgE antibody, termed BSW17, yielded two highly specific anti-idiotypic DARPins both with high affinity. Their binding characteristics were comparable with these of a previously selected anti-idiotypic antibody. In vitro cell assays showed that the anti-idiotypic DARPins were able to inhibit the binding of BSW17 to cell-bound IgE and prevented BSW17 functional activity. These experiments demonstrate the possibility to isolate anti-idiotypic DARPins recognizing idiotypic determinants analogous to antibodies. In the future these DARPins may be further analyzed for their potential as putative vaccine candidates.
Territorial Cohesion through Spatial Policies: An Analysis with Cultural Theory and Clumsy Solutions
Resumo:
The European Territorial Cohesion Policy has been the subject of numerous debates in recent years. Most contributions focus on understanding the term itself and figuring out what is behind it, or arguing for or against a stronger formal competence of the European Union in this field. This article will leave out these aspects and pay attention to (undefined and legally non-binding) conceptual elements of territorial cohesion, focusing on the challenge of linking it within spatial policies and organising the relations. Therefore, the theoretical approach of Cultural Theory and its concept of clumsy solution are applied to overcome the dilemma of typical dichotomies by adding a third and a fourth (but not a fifth) perspective. In doing so, normative contradictions between different rational approaches can be revealed, explained and approached with the concept of ‘clumsy solutions’. This contribution aims at discussing how this theoretical approach helps us explain and frame a coalition between the Territorial Cohesion Policy and spatial policies. This approach contributes to finding the best way of linking and organising policies, although the solution might be clumsy according to the different rationalities involved.
Resumo:
Using explicitly-correlated coupled-cluster theory with single and double excitations, the intermolecular distances and interaction energies of the T-shaped imidazole⋯⋯benzene and pyrrole⋯⋯benzene complexes have been computed in a large augmented correlation-consistent quadruple-zeta basis set, adding also corrections for connected triple excitations and remaining basis-set-superposition errors. The results of these computations are used to assess other methods such as Møller–Plesset perturbation theory (MP2), spin-component-scaled MP2 theory, dispersion-weighted MP2 theory, interference-corrected explicitly-correlated MP2 theory, dispersion-corrected double-hybrid density-functional theory (DFT), DFT-based symmetry-adapted perturbation theory, the random-phase approximation, explicitly-correlated ring-coupled-cluster-doubles theory, and double-hybrid DFT with a correlation energy computed in the random-phase approximation.
Resumo:
The concept of national self-determination is a highly contested concept from very outset. It is partly due to its dual parentage, namely nationalism and liberalism. Prior to 1945 it was only a political concept without legal binding. With the incorporation of the principle in the UN Charter it was universalized and legalized. However, there were two competing interpretations at the UN based on de-colonization and representative government. How to define self and what really determined remain highly controversial. How to reconcile the international norm of sovereignty of state and self determination of people became more complex problem with the tide of secessionist movements based on ethno-nationalism. The concept of internal self-determination came as a compromise; but it is also very vague and harbors a wide range of interpretations.
Resumo:
The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.
Resumo:
In the last decade, two tools, one drawn from information theory and the other from artificial neural networks, have proven particularly useful in many different areas of sequence analysis. The work presented herein indicates that these two approaches can be joined in a general fashion to produce a very powerful search engine that is capable of locating members of a given nucleic acid sequence family in either local or global sequence searches. This program can, in turn, be queried for its definition of the motif under investigation, ranking each base in context for its contribution to membership in the motif family. In principle, the method used can be applied to any binding motif, including both DNA and RNA sequence families, given sufficient family size.
Resumo:
The use of molecular genetics to introduce both a metal ion binding site and a nitroxide spin label into the same protein opens the use of paramagnetic metalnitroxyl interactions to estimate intramolecular distances in a wide variety of proteins. In this report, a His-Xaa3-His metal ion binding motif was introduced at the N terminus of the long interdomain helix of T4 lysozyme (Lys-65 --> His/Gln-69 --> His) of three mutants, each containing a single nitroxide-labeled cysteine residue at position 71, 76, or 80. The results show that Cu(II)-induced relaxation effects on the nitroxide can be quantitatively analyzed in terms of interspin distance in the range of 10-25 A using Redfield theory, as first suggested by Leigh [Leigh, J.S. (1970) J. Chem. Phys. 52, 2608-2612]. Of particular interest is the observation that distances can be determined both under rigid lattice conditions in frozen solution and in the presence of motion of the spins at room temperature under physiological conditions. The method should be particularly attractive for investigating structure in membrane proteins that are difficult to crystallize. In the accompanying paper, the technique is applied to a polytopic membrane protein, lactose permease.
Resumo:
The concentration of protein in a solution has been found to have a significant effect on ion binding affinity. It is well known that an increase in ionic strength of the solvent medium by addition of salt modulates the ion-binding affinity of a charged protein due to electrostatic screening. In recent Monte Carlo simulations, a similar screening has been detected to arise from an increase in the concentration of the protein itself. Experimental results are presented here that verify the theoretical predictions; high concentrations of the negatively charged proteins calbindin D9k and calmodulin are found to reduce their affinity for divalent cations. The Ca(2+)-binding constant of the C-terminal site in the Asn-56 --> Ala mutant of calbindin D9k has been measured at seven different protein concentrations ranging from 27 microM to 7.35 mM by using 1H NMR. A 94% reduction in affinity is observed when going from the lowest to the highest protein concentration. For calmodulin, we have measured the average Mg(2+)-binding constant of sites I and II at 0.325, 1.08, and 3.25 mM protein and find a 13-fold difference between the two extremes. Monte Carlo calculations have been performed for the two cases described above to provide a direct comparison of the experimental and simulated effects of protein concentration on metal ion affinities. The overall agreement between theory and experiment is good. The results have important implications for all biological systems involving interactions between charged species.
Resumo:
Natural anthocyanin pigments/dyes and phenolic copigments/co-dyes form noncovalent complexes, which stabilize and modulate (in particular blue, violet, and red) colors in flowers, berries, and food products derived from them (including wines, jams, purees, and syrups). This noncovalent association and their electronic and optical implications constitute the copigmentation phenomenon. Over the past decade, experimental and theoretical studies have enabled a molecular understanding of copigmentation. This review revisits this phenomenon to provide a comprehensive description of the nature of binding (the dispersion and electrostatic components of π–π stacking, the hydrophobic effect, and possible hydrogen-bonding between pigment and copigment) and of spectral modifications occurring in copigmentation complexes, in which charge transfer plays an important role. Particular attention is paid to applications of copigmentation in food chemistry.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
Attention is drawn to a need for caution in the determination of binding data for protein-polyelectrolyte interactions by frontal analysis continuous capillary electrophoresis (FACCE). Because the method is valid only for systems involving comigration of complex(es) and slower-migrating reactant, establishing conformity with that condition is clearly a prerequisite for its application. However, that requirement has not been tested in any published studies thus far. On the basis of calculated FACCE patterns, presented to illustrate features by which such comigration of complex(es) and slower-migrating reactant can be identified, the form of the published pattern for a P-lactoglobulin-poly(styrenesulfonate) mixture does not seem to signify the migration behavior required to justify its consideration in such terms. Additional experimental studies are therefore needed to ascertain the validity of FACCE as a means of determining binding data for the characterization of protein-polyelectrolyte interactions. (c) 2005 Elsevier Inc. All rights reserved.