997 resultados para beam sizes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of radiation backscattered from the secondary collimators into the monitor chamber in an Elekta linac (producing 6 and 10 MV photon beams) are investigated using BEAMnrc Monte Carlo simulations. The degree and effects of this backscattered radiation are assessed by evaluating the changes to the calculated dose in the monitor chamber, and by determining a correction factor for those changes. Additionally, the fluency and energy characteristics of particles entering the monitor chamber from the downstream direction are evaluated by examining BEAMnrc phase-space data. It is shown that the proportion of particles backscattered into the monitor chamber is small (<0.35 %), for all field sizes studied. However, when the backscatter plate is removed from the model linac, these backscattered particles generate a noticeable increase in dose to the monitor chamber (up to approximate to 2.4 % for the 6 MV beam and up to 4.4 % for the 10 MV beam). With its backscatter plate in place, the Elekta linac (operating at 6 and 10 MV) is subject to negligible variation of monitor chamber dose with field size. At these energies, output variations in photon beams produced by the clinical Elekta linear accelerator can be attributed to head scatter alone. Corrections for field-size-dependence of monitor chamber dose are not necessary when running Monte Carlo simulations of the Elekta linac operating at 6 and 10 MV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc. The geometric and dosimetric accuracy of CTCombine’s output has been assessed by simulating simple and complex treatments applied to a rotated planar phantom and a rotated humanoid phantom and comparing the resulting virtual EPID images with the images acquired using experimental measurements and independent simulations of equivalent phantoms. It is expected that CTCombine will be useful for Monte Carlo studies of EPID dosimetry as well as other EPID imaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their lightweight and cost-effectiveness. They have the beneficial characteristics of including torsionally rigid rectangular flanges combined with economical fabrication processes. Currently there is significant interest in using LSB sections as flexural members in floor joist systems. When used as floor joists, the LSB sections require holes in the web to provide access for inspection and various services. But there are no design methods that provide accurate predictions of the moment capacities of LSBs with web holes. In this study, the buckling and ultimate strength behaviour of LSB flexural members with web holes was investigated in detail by using a detailed parametric study based on finite element analyses with an aim to develop appropriate design rules and recommendations for the safe design of LSB floor joists. Moment capacity curves were obtained using finite element analyses including all the significant behavioural effects affecting their ultimate member capacity. The parametric study produced the required moment capacity curves of LSB section with a range of web hole combinations and spans. A suitable design method for predicting the ultimate moment capacity of LSB with web holes was finally developed. This paper presents the details of this investigation and the results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The iPlan treatment planning sys-tem uses a pencil beam algorithm, with density cor-rections, to predict the doses delivered by very small (stereotactic) radiotherapy fields. This study tests the accuracy of dose predictions made by iPlan, for small-field treatments delivered to a planar solid wa-ter phantom and to heterogeneous human tissue using the BrainLAB m3 micro-multileaf collimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analystical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Twelve beam-to-column connections between cold-formed steel sections consisting of three beam depths and four connection types were tested in isolation to investigate their behavior based on strength, stiffness and ductility. Resulting moment-rotation curves indicate that the tested connections are efficient moment connections where moment capacities ranged from about 65% to 100% of the connected beam capac-ity. With a moment capacity of greater than 80% of connected beam member capacity, some of the connec-tions can be regarded as full strength connections. Connections also possessed sufficient ductility with rota-tions of 20 mRad at failure although some connections were too ductile with rotations in excess of 30 mRad. Generally, most of the connections possess the strength and ductility to be considered as partial strength con-nections. The ultimate failures of almost all of the connections were due to local buckling of the compression web and flange elements of the beam closest to the connection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.