995 resultados para basic engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pain in the joint is often due to cartilage degeneration and represents a serious medical problem affecting people of all ages. Although many, mostly surgical techniques, are currently employed to treat cartilage lesions, none has given satisfactory results in the long term. Recent advances in biology and material science have brought tissue engineering to the forefront of new cartilage repair techniques. The combination of autologous cells, specifically designed scaffolds, bioreactors, mechanical stimulations and growth factors together with the knowledge that underlies the principles of cell biology offers promising avenues for cartilage tissue regeneration. The present review explores basic biology mechanisms for cartilage reconstruction and summarizes the advances in the tissue engineering approaches. Furthermore, the limits of the new methods and their potential application in the osteoarthritic conditions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dark fine grained basic masses of rock are found in nearly every part of the Boulder Batholith, these commonly being referred to as inclusions, segregations, autoliths, and various other names. The origin, distribution, and composition of the dark inclusions form the basis for this report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many schools do not begin to introduce college students to software engineering until they have had at least one semester of programming. Since software engineering is a large, complex, and abstract subject it is difficult to construct active learning exercises that build on the students’ elementary knowledge of programming and still teach basic software engineering principles. It is also the case that beginning students typically know how to construct small programs, but they have little experience with the techniques necessary to produce reliable and long-term maintainable modules. I have addressed these two concerns by defining a local standard (Montana Tech Method (MTM) Software Development Standard for Small Modules Template) that step-by-step directs students toward the construction of highly reliable small modules using well known, best-practices software engineering techniques. “Small module” is here defined as a coherent development task that can be unit tested, and can be car ried out by a single (or a pair of) software engineer(s) in at most a few weeks. The standard describes the process to be used and also provides a template for the top-level documentation. The instructional module’s sequence of mini-lectures and exercises associated with the use of this (and other) local standards are used throughout the course, which perforce covers more abstract software engineering material using traditional reading and writing assignments. The sequence of mini-lectures and hands-on assignments (many of which are done in small groups) constitutes an instructional module that can be used in any similar software engineering course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enormous impact of crystal engineering in modern solid state chemistry takes advantage from the connection between a typical basic science field and the word engineering. Regrettably, the engineering aspect of organic or metal organic crystalline materials are limited, so far, to descriptive structural features, sometime entangled with topological aspects, but only rarely with true material design. This should include not only the fabrication and structural description at micro- and nano-scopic level of the solids, but also a proper reverse engineering, a fundamental discipline for engineers. Translated into scientific language, the reverse crystal engineering refers to a dedicated and accurate analysis of how the building blocks contribute to generate a given material property. This would enable a more appropriate design of new crystalline material. We propose here the application of reverse crystal engineering to optical properties of organic and metal organic framework structures, applying the distributed atomic polarizability approach that we have extensively investigated in the past few years[1,2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problem: Medical and veterinary students memorize facts but then have difficulty applying those facts in clinical problem solving. Cognitive engineering research suggests that the inability of medical and veterinary students to infer concepts from facts may be due in part to specific features of how information is represented and organized in educational materials. First, physical separation of pieces of information may increase the cognitive load on the student. Second, information that is necessary but not explicitly stated may also contribute to the student’s cognitive load. Finally, the types of representations – textual or graphical – may also support or hinder the student’s learning process. This may explain why students have difficulty applying biomedical facts in clinical problem solving. Purpose: To test the hypothesis that three specific aspects of expository text – the patial distance between the facts needed to infer a rule, the explicitness of information, and the format of representation – affected the ability of students to solve clinical problems. Setting: The study was conducted in the parasitology laboratory of a college of veterinary medicine in Texas. Sample: The study subjects were a convenience sample consisting of 132 second-year veterinary students who matriculated in 2007. The age of this class upon admission ranged from 20-52, and the gender makeup of this class consisted of approximately 75% females and 25% males. Results: No statistically significant difference in student ability to solve clinical problems was found when relevant facts were placed in proximity, nor when an explicit rule was stated. Further, no statistically significant difference in student ability to solve clinical problems was found when students were given different representations of material, including tables and concept maps. Findings: The findings from this study indicate that the three properties investigated – proximity, explicitness, and representation – had no statistically significant effect on student learning as it relates to clinical problem-solving ability. However, ad hoc observations as well as findings from other researchers suggest that the subjects were probably using rote learning techniques such as memorization, and therefore were not attempting to infer relationships from the factual material in the interventions, unless they were specifically prompted to look for patterns. A serendipitous finding unrelated to the study hypothesis was that those subjects who correctly answered questions regarding functional (non-morphologic) properties, such as mode of transmission and intermediate host, at the family taxonomic level were significantly more likely to correctly answer clinical case scenarios than were subjects who did not correctly answer questions regarding functional properties. These findings suggest a strong relationship (p < .001) between well-organized knowledge of taxonomic functional properties and clinical problem solving ability. Recommendations: Further study should be undertaken investigating the relationship between knowledge of functional taxonomic properties and clinical problem solving ability. In addition, the effect of prompting students to look for patterns in instructional material, followed by the effect of factors that affect cognitive load such as proximity, explicitness, and representation, should be explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidisciplinary training is widely appreciated in industry and business, and nevertheless usually is not addressed in the early stages of most undergraduate programs. We outline here a multidisciplinary course for undergraduates studying engineering in which mathematics would be the common language, the transverse tool. The goal is motivating students to learn more mathematics and as a result, improve the quality of engineering education. The course would be structured around projects in four branches in engineering: mechanical, electrical, civil and bio-tech. The projects would be chosen among a wide variety of topics in engineering practice selected with the guidance of professional engineers. In these projects mathematics should interact with at least two other basic areas of knowledge in engineering: chemistry, computers science, economics, design or physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this course, conducted by Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE) is to pass on basic knowledge about Science and Nuclear Technology to the general public, mostly students and introduce them to its most relevant points. The purposes of this course are to provide general information, to answer the most common questions about Nuclear Energy and to motivate the young students to start a career in nuclear. Therefore, it is directed mainly to high school and university students, but also to general people that wants to learn about the key issues of such an important matter in our society. Anybody could attend the course, as no specific scientific education is required. The course is done at least once a year, during the Annual Meeting of the Spanish Nuclear Society, which takes place in a different Spanish city each time. The course is done also to whichever university or institution that asks for it to JJNN, with the only limit of the presenter´s availability. The course is divided into the following chapters: Physical nuclear and radiation principles, Nuclear power plants, Nuclear safety, Nuclear fuel, Radioactive waste, Decommission of nuclear facilities, Future nuclear power plants, Other uses of nuclear technology, Nuclear energy, climate change and sustainable development. The course is divided into 15 minutes lessons on the above topics, imparted by young professionals, experts in the field that belongs either to the Spanish Young Generation in Nuclear, either to companies and institutions related with nuclear energy. At the end of the course, a 200 pages book with the contents of the course is handed to every member of the audience. This book is also distributed in other course editions at high schools and universities in order to promote the scientific dissemination of the Nuclear Technology. As an extra motivation, JJNN delivers a course certificate to the assistants. At the end of the last edition course, in Santiago de Compostela, the assistants were asked to provide a feedback about it. Some really interesting lessons were learned, that will be very useful to improve next editions of the course. As a general conclusion of the courses it can be said that many of the students that have assisted to the course have increased their motivation in the nuclear field, and hopefully it will help the young talents to choose the nuclear field to develop their careers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the results of six years of research in engineering education, in the application of the European Higher Education Area (EHEA) to improve the performance of the students in the subject Analysis of Circuits of Telecommunication Engineering, are analysed taking into consideration the fact that there would be hidden variables that both separate students into subgroups and show the connection among several basic subjects such as Analysis of Circuits (AC) and Mathematics (Math). The discovery of these variables would help us to explain the characteristics of the students through the teaching and learning methodology, and would show that there are some characteristics that instructors do not take into account but that are of paramount importance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The core concepts, or threads, of Biosystems Engineering (BSEN) are variously understood by those within the discipline, but have never been unequivocally defined due to its early stage of development. This makes communication and teaching difficult compared to other well established engineering subjects. Biosystems Engineering is a field of Engineering which int egrates engineering science and design with applied biological, environmental and agricultural sciences. It represents an evolution of the Agricultural Engineering discipline applied to all living organisms not including biomedical applications. The basic key element for the emerging EU Biosystems Engineering program of studies is to ensure that it offers essential minimum fundamental engine ering knowledge and competences . A core curriculum developed by Erasmus Thematic Networks is used as benchmark for Agr icultural and Biosystems Engineering studies in Europe. The common basis of the core curriculum for the discipline across the Atlantic , including a minimum of competences comprising the Biosystems Engineering core competencies, has been defined by an Atlan tis project , but this needs to be taken further by defining the threads linking courses together. This paper presents a structured approach to define the Threads of BSEN . The definition of the mid-level competences and the associated learning outcomes has been one of the objectives of the Atlantis programme TABE.NET. The mid-level competences and learning outcomes for each of six specializations of BSEN are defined while the domain-specific knowledge to be acquired for each outcome is proposed. Once the proposed definitions are adopted, these threads will be available for global development of the BSEN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survey Engineering curricula involves the integration of many formal disciplines at a high level of proficiency. The Escuela de Ingenieros en Topografía, Cartografía y Geodesia at Universidad Politécnica de Madrid (Survey Engineering) has developed an intense and deep teaching on so-called Applied Land Sciences and Technologies or Land Engineering. However, new approaches are encouraged by the European Higher Education Area (EHEA). This fact requires a review of traditional teaching and methods. Furthermore, the new globalization and international approach gives new ways to this discipline to teach and learn about how to bridge gap between cultures and regions. This work is based in two main needs. On one hand, it is based on integration of basic knowledge and disciplines involved in typical Survey Engineering within Land Management. On the other, there is an urgent need to consider territory on a social and ethical basis, as far as a part of the society, culture, idiosyncrasy or economy. The integration of appropriate knowledge of the Land Management is typically dominated by civil engineers and urban planners. It would be very possible to integrate Survey Engineering and Cooperation for Development in the framework of Land Management disciplines. Cooperation for Development is a concept that has changed since beginning of its use until now. Development projects leave an impact on society in response to their beneficiaries and are directed towards self-sustainability. Furthermore, it is the true bridge to reduce gap between societies when differences are immeasurable. The concept of development has also been changing and nowadays it is not a purely economic concept. Education, science and technology are increasingly taking a larger role in what is meant by development. Moreover, it is commonly accepted that Universities should transfer knowledge to society, and the transfer of knowledge should be open to countries most in need for developing. If the importance of the country development is given by education, science and technology, knowledge transfer would be one of the most clear of ways of Cooperation for Development. Therefore, university cooperation is one of the most powerful tools to achieve it, placing universities as agents of development. In Spain, the role of universities as agents of development and cooperation has been largely strengthened. All about this work deals to how to implement both Cooperation for Development and Land Management within Survey Engineering at the EHEA framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theory is developed of an electrostatic probe in a fully-ionized plasma in the presence of a strong magnetic field. The ratio of electron Larmor radius to probe transverse dimension is assumed to be small. Poisson's equation, together with kinetic equations for ions and electrons are considered. An asymptotic perturbation method of multiple scales is used by considering the characteristic lengths appearing in the problem. The leading behavior of the solution is found. The results obtained appear to apply to weaker fields also, agreeing with the solutions known in the limit of no magnetic field. The range of potentials for wich results are presented is limited. The basic effects produced by the field are a depletion of the plasma near the probe and a non-monotonic potential surrounding the probe. The ion saturation current is not changed but changes appear in both the floating potential Vf and the slope of the current-voltage diagram at Vf. The transition region extends beyond the space potential Vs,at wich point the current is largely reduced. The diagram does not have an exponential form in this region as commonly assumed. There exists saturation in electron collection. The extent to which the plasma is disturbed is determined. A cylindrical probe has no solution because of a logarithmic singularity at infinity. Extensions of the theory are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study in which the relationship between basic subjects (Mathematics and Physics) and applied engineering subjects (related to Machinery, Electrical Engineering, Topography and Buildings) in higher engineering education curricula is evaluated. The analysis has been conducted using the academic records of 206 students for five years. Furthermore, 34 surveys and personal interviews were conducted to analyze the connections between the contents taught in each subject and to identify student perceptions of the correlation with other subjects or disciplines. At the same time, the content of the different subjects have been analyzed to verify the relationship among the disciplines.Aproper coordination among subjects will allow students to relate and interconnect topics of different subjects, even with the ones learnt in previous courses, while also helping to reduce dropout rates and student failures in successfully accomplishing the different courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact, well-organized, and natural motif, stabilized by three disulfide bonds, is proposed as a basic scaffold for protein engineering. This motif contains 37 amino acids only and is formed by a short helix on one face and an antiparallel triple-stranded beta-sheet on the opposite face. It has been adopted by scorpions as a unique scaffold to express a wide variety of powerful toxic ligands with tuned specificity for different ion channels. We further tested the potential of this fold by engineering a metal binding site on it, taking the carbonic anhydrase site as a model. By chemical synthesis we introduced nine residues, including three histidines, as compared to the original amino acid sequence of the natural charybdotoxin and found that the new protein maintains the original fold, as revealed by CD and 1H NMR analysis. Cu2+ ions are bound with Kd = 4.2 x 10(-8) M and other metals are bound with affinities in an order mirroring that observed in carbonic anhydrase. The alpha/beta scorpion motif, small in size, easily amenable to chemical synthesis, highly stable, and tolerant for sequence mutations represents, therefore, an appropriate scaffold onto which polypeptide sequences may be introduced in a predetermined conformation, providing an additional means for design and engineering of small proteins.