887 resultados para baroreflex sensitivity
Resumo:
Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n = 8) five days apart into the left gastrocnemius muscle. Control animals were injected twice with normal saline (pH 7.2, n = 6). One day after the second injection of acidic saline or normal saline, the animals had pulse interval (PI) and systolic arterial pressure (SAP) variability, and spontaneous baroreflex sensitivity (BRS) evaluated. After induction of CWP, there was an increase of power in the low frequency (LF) band of PI spectrum (12.75 +/- 1.04 nu), a decrease in the high frequency (HF) band (87.25 +/- 1.04 nu) and an increase of LF/HF ratio (0.16 +/- 0.01), when compared to control animals (7.83 +/- 1.13 nu LF; 92.16 +/- 1.13 nu HF; 0.08 +/- 0.01 LF/HF). In addition, there was an increase of power in the LF band of SAP spectrum (7.93 +/- 1.39 mmHg(2)) when compared to control animals (2.97 +/- 0.61 mmHg(2)). BRS was lower in acidic saline injected rats (0.59 +/- 0.06 ms/mmHg) when compared to control animals (0.71 +/- 0.03 ms/mmHg). Our results showed that induction of CWP in rats shifts cardiac sympathovagal balance towards sympathetic predominance and decreases BRS. These data corroborate findings in humans with FM. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n = 8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (alpha-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11 +/- 0.49 vs. 5 +/- 0.3 mm Hg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8 +/- 0.26 vs. 5.02 +/- 0.21 mm Hg) and RV (5.1 +/- 0.21 vs. 4.2 +/- 0.12 mm Hg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (similar to 6-fold) and III (similar to 5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased a-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sickle cell anemia (SCA) is associated to increased cardiac output, normal heart rate (HR), abnormal QT dispersion and lower diastolic blood pressure (DBP). The mechanisms are still unknown. The objective of this study was to test the hypothesis that there is cardiovascular autonomic dysfunction (CAD) in SCA. The secondary objectives were to distinguish the roles of chronic anemia and hemoglobinopathy and to evaluate the predominance of the sympathetic or parasympathetic systems in the pathogenesis of CAD. Sixteen subjects with SCA, 13 with sickle cell trait (SCT), 13 with iron deficiency anemia (IDA), and 13 healthy volunteers (HV) were evaluated. All subjects were submitted to 24 h-electrocardiogram (24 h-ECG), plasma norepinephrine (NE) measurement before and after isometric exercise (IE), and also Valsalva maneuver (VM), diving maneuver (DV), and tilt test (TT). Baroreflex sensitivity (BRS) was also evaluated. The minimum, average and maximum HR as well as the percentage of bradycardia and tachycardia at 24-h ECG were similar in all groups. NE at baseline and after IE did not differ between groups. The SCA group showed less bradycardia at phase IV of VM, less bradycardia during DV, and also less tachycardia and lower DBP during TT. BRS for bradycardia and tachycardia reflex was decreased in the SCA and SCT groups. In conclusion, 1) there is CAD in SCA, and it is characterized by the reduction of BRS and the limitation of HR modulation mediated by the parasympathetic system; 2) cardiovascular sympathetic activity is preserved in SCA; and 3) hemoglobinopathy is the preponderant ethiopathogenic factor. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigated the influence of angiotensin-converting enzyme inhibitor (ACEi) treatment and physical exercise on arterial pressure (AP) and heart rate variability (HRV) in volunteer patients with hypertension. A total of 54 sedentary volunteers were divided into three groups: normotensive (NT Group), hypertensive (HT Group) and HT volunteers treated with ACEi (ACEi Group). All volunteers underwent an aerobic physical-training protocol for 15 weeks. HRV was investigated using a spectral analysis of a time series of R-R interval (RRi) that was obtained in a supine position and during a tilt test. Physical training promoted a significant reduction in the mean arterial pressure of the HT group (113 +/- 3 vs. 106 +/- 1 mm Hg) and the ACEi group (104 +/- 2 vs. 98 +/- 2 mm Hg). Spectral analysis of RRi in the supine position before physical training demonstrated that the NT and ACEi groups had similar values at low frequency (LF; 0.04-0.15 Hz) and high frequency (HF; 0.15-0.5 Hz) oscillations. The HT group had an increase in LF oscillations in absolute and normalized units and a decrease in HF oscillations in normalized units compared with the other groups. The HT group had the lowest responses to the tilt test during LF oscillations in normalized units. Physical training improved the autonomic modulation of the heart rate in the supine position only in the HT group. Physical training promoted a similar increase in autonomic modulation responses in the tilt test in all groups. Our findings show that aerobic physical training improves cardiac autonomic modulation in HT volunteers independently of ACEi treatment. Hypertension Research (2012) 35, 82-87; doi:10.1038/hr.2011.162; published online 29 September 2011
Resumo:
Background: Intralipid (R) and heparin infusion results in increased blood pressure and autonomic abnormalities in normal and hypertensive individuals. Objective: To evaluate insulin sensitivity and the impact of Intralipid (R) and heparin (ILH) infusion on hemodynamic, metabolic, and autonomic response in patients with the indeterminate form of Chagas' disease. Methods: Twelve patients with the indeterminate form of Chagas' disease and 12 healthy volunteers were evaluated. Results: Baseline blood pressure and heart rate were similar in both groups. Plasma noradrenaline levels were slightly increased in the Chagas' group. After insulin tolerance testing (ITT), a significant decline was noted in glucose in both groups. ILH infusion resulted in increased blood pressure in both groups, but there was no significant change in plasma noradrenaline. The low-frequency component (LF) was similar and similarly increased in both groups. The high-frequency component (HF) was lower in the Chagas' group. Conclusion: Patients with the indeterminate form of Chagas' disease had increased sympathetic activity at baseline and impaired response to insulin. They also had a lower high-frequency component and impaired baroreflex sensitivity at baseline and during Intralipid (R) and heparin infusion. (Arq Bras Cardiol 2012;98(3):225-233)
Resumo:
Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.
Resumo:
Obese persons suffer from an increased mortality risk supposedly due to cardiovascular disorders related to either continuously lowered parasympathetic or altered sympathetic activation. Our cross-sectional correlation study establishes the relationship between obesity and autonomic regulation as well as salivary cortisol levels. Three patient cohorts were sampled, covering ranges of body mass index (BMI) of 27-32 (n=17), 33-39 (n=13) and above 40 kg/m(2)(n=12), and stratified for age, sex and menopausal status. Autonomic cardiovascular regulation was assessed by use of heart rate variability and continuous blood pressure recordings. Spectral analytical calculation (discrete Fourier transformation) yields indices of sympathetic and parasympathetic activation and baroreflex sensitivity. Morning salivary cortisol was concurrently collected. Contrary to expectation, BMI and waist/hip ratio (WHR) were inversely correlated with sympathetic activity. This was true for resting conditions (r=-0.48, P<0.001; r=-0.33, P<0.05 for BMI and WHR respectively) and for mental challenge (r=-0.42, P<0.01 for BMI). Resting baroreflex sensitivity was strongly related to the degree of obesity at rest (BMI: r=-0.35, P<0.05) and for mental challenge (r=-0.53, P<0.001). Salivary cortisol correlated significantly with waist circumference (r=-0.34, P=0.05). With increasing weight, no overstimulation was found but a depression in sympathetic and parasympathetic activity together with a significant reduction in baroreflex functioning and in salivary cortisol levels.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
PURPOSE: To explore the effects of glaucoma and aging on low-spatial-frequency contrast sensitivity by using tests designed to assess performance of either the magnocellular (M) or parvocellular (P) visual pathways. METHODS: Contrast sensitivity was measured for spatial frequencies of 0.25 to 2 cyc/deg by using a published steady- and pulsed-pedestal approach. Sixteen patients with glaucoma and 16 approximately age-matched control subjects participated. Patients with glaucoma were tested foveally and at two midperipheral locations: (1) an area of early visual field loss, and (2) an area of normal visual field. Control subjects were assessed in matched locations. An additional group of 12 younger control subjects (aged 20-35 years) were also tested. RESULTS: Older control subjects demonstrated reduced sensitivity relative to the younger group for the steady (presumed M)- and pulsed (presumed P)-pedestal conditions. Sensitivity was reduced foveally and in the midperiphery across the spatial frequency range. In the area of early visual field loss, the glaucoma group demonstrated further sensitivity reduction relative to older control subjects across the spatial frequency range for both the steady- and pulsed-pedestal tasks. Sensitivity was also reduced in the midperipheral location of "normal" visual field for the pulsed condition. CONCLUSIONS: Normal aging results in a reduction of contrast sensitivity for the low-spatial-frequency-sensitive components of both the M and P pathways. Glaucoma results in a further reduction of sensitivity that is not selective for M or P function. The low-spatial-frequency-sensitive channels of both pathways, which are presumably mediated by cells with larger receptive fields, are approximately equivalently impaired in early glaucoma.
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations