84 resultados para bainite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of pre-straining (PS) and bake-hardening (BH) on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) steels after: (i) thermomechanically processing (TMP) and (ii) intercritical annealing. The steels were characterised before and after PS/BH by transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile tests. The main microstructural differences were the higher volume fraction of bainite and more stable retained austenite in the TMP steel. This led to a difference in the strain-hardening behavior before and after BH treatment. The higher dislocation density in ferrite and formation of microbands in the TMP steel after PS and the formation of Fe3C carbides between the bainitic ferrite laths during BH for both steels also affected the strain-hardening behavior. However, both steels after PS/BH treatment demonstrated an increase in the yield and tensile strength.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous and discontinuous cooling tests were performed using a quench deformation dilatometer to develop a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in low carbon TRIP (transformation induced plasticity) steels as a function of thermomechanical processing and composition. Deformation in the unrecrystallised austenite region refined the ferrite grain size and increased the ferrite and bainite transformation temperatures for cooling rates from 10 to 90 K s-1. The influence of niobium on the transformation kinetics was also investigated. Niobium increases the ferrite start transformation temperature, refines the ferrite microstructure, and stimulates the formation of acicular ferrite. The effect of the bainite isothermal transformation temperature on the final microstructure of steels with and without a small addition of niobium was studied. Niobium promotes the formation of stable retained austenite, which influences the mechanical properties of TRIP steels. The optimum mechanical properties were obtained after isothermal holding at 400°C in the niobium steel containing the maximum volume fraction of retained austenite with acicular ferrite as the predominant second phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated  thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The  results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fl:action of retained austenite, a increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200 and 350°C bainitic transformation temperatures. The microstructure was consisted of bainitic ferrite lath and retained austenite for both heat treatment conditions. The crystallographic analysis revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with their parent austenite. The isothermal bainite transformation temperature has a significant effect on the retained austenite characteristics and the variant selection of the bainitic ferrite laths. In general, a decrease in the isothennal bainite transformation temperature refined the bainitic structure and weakened the variant selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fraction of polygonal fenite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behavior as a function of plastic strain. X-ray analysis was used to characterize the volume fraction and carbon content of retained austenite. TEM and heat-tinting were utilized to analyze the effect of bainitic fenite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity mechanism during the early stages of deformation for a microstructure containing I5% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism in when there is 50% of polygonal ferrite in the microstructure. The baillitic fenite morphology affects the deformation mode of retained austenite during straining. The polygonal fenite behavior during straining depends on dislocation substructure tonned due to the deformation and the additional mobile dislocations caused by the TRIP effect. TRIP and TWIP effects depend not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron back-scattered diffraction in conjunction with transmission electron microscopy was employed to investigate the crystallographic nature of bainitic laths formed at relatively low transformation temperatures where a nanostructured bainite forms. It was revealed that the bainitic ferrite laths are close to the Nishiyama–Wasserman orientation relationship with the parent austenite. Furthermore, the temperature showed a significant effect on the retained austenite characteristics and the variant selection of the bainitic ferrite laths. A decrease in temperature generally refined the bainitic structure and weakened the variant selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fractions of polygonal ferrite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interrupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behaviour as a function of plastic strain. X-ray analysis was used to characterise the volume fraction and carbon content of retained austenite. Transmission electron microscopy was utilised to analyse the effect of bainitic ferrite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity (TRIP) mechanism during the early stages of deformation for a microstructure containing 15% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism when there is 50% of polygonal ferrite in the microstructure. The bainitic ferrite morphology affects the deformation mode of retained austenite during straining. The polygonal ferrite behaviour during straining depends on dislocation substructure formed due to the deformation and the additional mobile dislocations caused by the TRIP effect. Operation of TRIP or twinning mechanisms depends not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of a bake-hardening (BH) treatment on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) and Dual Phase (DP) steels after: (i) thermomechanical processing (TMP) and (ii) intercritical annealing (IA). The steels were characterized using X-ray diffraction, transmission electron microscopy (TEM) and three-dimensional atom probe tomography (APT). All steels showed high BH response. however, the DP and trip steels after IA/BH showed the appearance of upper and lower yield points, while the stress-strain behavior of the trip steel after TMP/BH was still continuous. This was due to the higher volume fraction of bainite and more stable retained austenite in the TMP/BH steel, the formation of plastic deformation zones with high dislocation density around the "as-quenched” martensite and “TRIP” martensite in the IA/BH DP steel and IA/BH TRIP steel, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fraction of retained austenite, an increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variant selection phenomenon during the austenite to bainite phase transformation in hot-rolled TRIP-aided steels was quantitatively characterized at the level of individual austenite grains. The reconstruction of the electron backscatter diffraction maps provided evidence that bainite grows by packets of laths sharing a common {1 1 1}y plane in the austenite. The affect of hot deformation is to reduce the number of packets that form. It is suggested that slip activity is important in understanding this effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of several commercially-produced multiphase steels was studied; including dual-phase (DP) and transformation induced plasticity (TRIP). In addition, a novel TRIP980 hybrid microstructure was examined that consisted of coarse ferrite grains along with low temperature bainite regions interspersed with retained austenite. Fully reversed strain controlled fatigue tests were conducted on the different steels to determine the cyclic stress response and strain to failure. The effects of the cyclic deformation on the microstructures were analysed using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). Results showed that the initial cyclic hardening behaviour and low cyclic softening ratio observed in the TRIP steels was not necessarily due to austenite to martensite transformation. Differences between the austenite transformation behaviour of the conventional and novel hybrid TRIP microstructures was related to the different surrounding phases and the size of the retained austenite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 350°C bainitic transformation temperature for 1 day to form fully bainitic structure with nano-layers of bainitic ferrite and retained austenite, while a 0.26C-1.96Si-2Mn-0.31Mo (wt%) steel was subjected to a successive isothermal heat treatment at 700°C for 300 min followed by 350°C for 120 min to form a hybrid microstructure consisting of ductile ferrite and fine scale bainite. The dislocation density and morphology of bainitic ferrite, and retained austenite characteristics such as size, and volume fraction were studied using Transmission Electron Microscopy. It was found that bainitic ferrite has high dislocation density for both steels. The retained austenite characteristics and bainite morphology were affected by composition of steels. Atom Probe Tomography (APT) has the high spatial resolution required for accurate determination of the carbon content of the bainitic ferrite and retained austenite, the solute distribution between these phases and calculation of the local composition of fine clusters and particles that allows to provide detailed insight into the bainite transformation of the steels. The carbon content of bainitic ferrite in both steels was found to be higher compared to the para-equilibrium level of carbon in ferrite. APT also revealed the presence of fine C-rich clusters and Fe-C carbides in bainitic ferrite of both steels.