980 resultados para bósons Z
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
We report the application of z-COSY experiment and a band selected version of it by employing a selective 90 degrees pulse entitled BASE-z-COSY for precise chiral discrimination, quantification of enantiomeric excess and the analyses of the H-1 NMR spectra of chiral molecules aligned in the chiral liquid crystalline solvent poly-gamma-benzyl-L-glutamate (PBLG). We have demonstrated their applicability for obtaining very high resolution in the H-1 NMR spectra of small organic molecules. It is well known that the commonly employed z-COSY experiment disentangles the spectral complexity, provides pure phase spectra with high resolution, aids in the complete spectral analyses, in addition to yielding information on relative signs of the Couplings. The BASE-z-COSY experiment possesses all these properties, permits the measure of enantiomeric excess, in addition to large saving of instrument time.
Resumo:
Gabapentin, a widely used antiepileptic drug, crystallizes in multiple polymorphic forms. A new crystal form of gabapentin monohydrate in the space group Pbca is reported and the packing arrangement compared with that of a previously reported polymorph in the space group P2(1)/c [Ibers, J.A. (2001) Acta Crystallogr; C57:641]. Gabapentin polymorphs can also occur from a selection of one of the two distinct chair forms of the 1,1-disubstituted cyclohexane. Crystal structures of the E and Z isomers of 4-tert-butylgabapentin provide models for analyzing anticipated packing modes in the conformational isomers of gabapentin. The E isomer crystallized in the space group Pca2(1), while the Z isomer crystallized in the space group P2(1)/c. The crystal structure of E-4-tert-butylgabapentin provides the only example of a structure in a non-centrosymmetric space group. Crystal structures of the hydrochloride and hydrobromide salts of 4-tert-butyl derivatives are reported. The results suggest that for gabapentin, a large 'polymorph-space' may be anticipated, in view of the multiple conformational states that are accessible to the molecule.
Resumo:
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66M_{ee}
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|
Resumo:
We present a search for associated production of the standard model (SM) Higgs boson and a $Z$ boson where the $Z$ boson decays to two leptons and the Higgs decays to a pair of $b$ quarks in $p\bar{p}$ collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb$^{-1}$ we see no evidence of a Higgs boson with a mass between 100 GeV$/c^2$ and 150 GeV$/c^2$. We set 95% confidence level (C.L.) upper limits on the cross-section for $ZH$ production as a function of the Higgs boson mass $m_H$; the limit is 8.2 times the SM prediction at $m_H = 115$ GeV$/c^2$.
Resumo:
We present a search for the Higgs boson in the process $q\bar{q} \to ZH \to \ell^+\ell^- b\bar{b}$. The analysis uses an integrated luminosity of 1 fb$^{-1}$ of $p\bar{p}$ collisions produced at $\sqrt{s} =$ 1.96 TeV and accumulated by the upgraded Collider Detector at Fermilab (CDF II). We employ artificial neural networks both to correct jets mismeasured in the calorimeter, and to distinguish the signal kinematic distributions from those of the background. We see no evidence for Higgs boson production, and set 95% CL upper limits on $\sigma_{ZH} \cdot {\cal B}(H \to b\bar{b}$), ranging from 1.5 pb to 1.2 pb for a Higgs boson mass ($m_H$) of 110 to 150 GeV/$c^2$.
Resumo:
We report a measurement of the ratio of the tt̅ to Z/γ* production cross sections in √s=1.96 TeV pp̅ collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The tt̅ cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ*→ll cross section predicted by the standard model, the extracted tt̅ cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σtt̅ =7.70±0.52 pb, for a top-quark mass of 172.5 GeV/c2.
Resumo:
We report a measurement of the ratio of the tt̅ to Z/γ* production cross sections in √s=1.96 TeV pp̅ collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The tt̅ cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ*→ll cross section predicted by the standard model, the extracted tt̅ cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σtt̅ =7.70±0.52 pb, for a top-quark mass of 172.5 GeV/c2.
Resumo:
The production rate and kinematics of photons produced in association with Z bosons are studied using 2/fb of p\bar{p} collision data collected at the Collider Detector at Fermilab. The cross section for p\bar{p} -> l^+ l^- gamma + X (where the leptons l are either muons or electrons with dilepton mass M_{ll} > 40 GeV/c^2, and where the photon has transverse energy Et_{gamma} > 7 GeV and is well separated from the leptons) is 4.6 +/- 0.2 (stat) +/- 0.3 (syst) +/- 0.3 (lum) pb, which is consistent with standard model expectations. We use the photon Et distribution from Z-gamma events where the Z has decayed to mu^+ mu^-, e^+ e^-, or nu\bar{nu} to set limits on anomalous (non-standard-model) trilinear couplings between photons and Z bosons.
Resumo:
We report on a measurement of the fraction of events with a W or Z boson produced diffractively in antiproton-proton collisions at a center of mass energy of 1.96 TeV, using data from 0.6 inverse femtobarns of integrated luminosity collected with the CDF-II detector equipped with a Roman-pot spectrometer that detects the antiproton (pbar) from pbar+p --> pbar+[X+W/Z]. We find that (0.97 +/- 0.11)% of Ws and (0.85 +/- 0.22)% of Zs are produced diffractively in a region of (anti)proton fractional momentum loss (\xi) of 0.03-1t p+[X+W/Z]+pbar, and on exclusive Z production, pbar+p-->pbar+Z+p. No signal is seen above background for these processes, and comparisons are made with expectations.
Resumo:
We report a measurement of the ratio of the top-antitop to Z/gamma* production cross sections in sqrt(s) = 1.96 TeV proton-antiproton collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The top-antitop cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/gamma*->ll cross section, the extracted top-antitop cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result sigma_(top-antitop) = 7.70 +/- 0.52 pb, for a top-quark mass of 172.5 GeV/c^2.
Resumo:
We present a search for the standard model Higgs boson produced with a Z boson in 4.1 fb^-1 of data collected with the CDF II detector at the Tevatron. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electrons or muons, we set 95% credibility level upper limits on the ZH production cross section times the H -> b bbar branching ratio. Improved analysis methods enhance signal sensitivity by 20% relative to previous searches beyond the gain due to the larger data sample. At a Higgs boson mass of 115 GeV/c^2 we set a limit of 5.9 times the standard model value.