974 resultados para autonomous agents


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we address the problem of multi-agent search. We formulate two deploy and search strategies based on optimal deployment of agents in search space so as to maximize the search effectiveness in a single step. We show that a variation of centroidal Voronoi configuration is the optimal deployment. When the agents have sensors with different capabilities, the problem will be heterogeneous in nature. We introduce a new concept namely, generalized Voronoi partition in order to formulate and solve the heterogeneous multi-agent search problem. We address a few theoretical issues such as optimality of deployment, convergence and spatial distributedness of the control law and the search strategies. Simulation experiments are carried out to compare performances of the proposed strategies with a few simple search strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information diffusion and influence maximization are important and extensively studied problems in social networks. Various models and algorithms have been proposed in the literature in the context of the influence maximization problem. A crucial assumption in all these studies is that the influence probabilities are known to the social planner. This assumption is unrealistic since the influence probabilities are usually private information of the individual agents and strategic agents may not reveal them truthfully. Moreover, the influence probabilities could vary significantly with the type of the information flowing in the network and the time at which the information is propagating in the network. In this paper, we use a mechanism design approach to elicit influence probabilities truthfully from the agents. Our main contribution is to design a scoring rule based mechanism in the context of the influencer-influencee model. In particular, we show the incentive compatibility of the mechanisms and propose a reverse weighted scoring rule based mechanism as an appropriate mechanism to use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of devising incentive strategies for viral marketing of a product. In particular, we assume that the seller can influence penetration of the product by offering two incentive programs: a) direct incentives to potential buyers (influence) and b) referral rewards for customers who influence potential buyers to make the purchase (exploit connections). The problem is to determine the optimal timing of these programs over a finite time horizon. In contrast to algorithmic perspective popular in the literature, we take a mean-field approach and formulate the problem as a continuous-time deterministic optimal control problem. We show that the optimal strategy for the seller has a simple structure and can take both forms, namely, influence-and-exploit and exploit-and-influence. We also show that in some cases it may optimal for the seller to deploy incentive programs mostly for low degree nodes. We support our theoretical results through numerical studies and provide practical insights by analyzing various scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For maximizing influence spread in a social network, given a certain budget on the number of seed nodes, we investigate the effects of selecting and activating the seed nodes in multiple phases. In particular, we formulate an appropriate objective function for two-phase influence maximization under the independent cascade model, investigate its properties, and propose algorithms for determining the seed nodes in the two phases. We also study the problem of determining an optimal budget-split and delay between the two phases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em um ambiente virtual, construído com o uso de tecnologia computacional, encontram-se presentes entidades virtuais inseridas em um espaço tridimensional, que é utilizado para a simulação de processos críticos, como os acidentes radiológicos. A pronta detecção de um acidente radiológico e a determinação da sua possível extensão são fatores essenciais para o planejamento de respostas imediatas e de ações de emergência. A integração das representações georeferenciadas do espaço tridimensional, com modelos baseados em agentes autônomos, com o objetivo de construir ambientes virtuais que tenham a capacidade de simular acidentes radiológicos é a proposta dessa tese. As representações georeferenciadas do espaço tridimensional candidatas são: i)as representações espaciais usadas nos sistemas de informações geográficas (SIG) e ii) a representação adotada pelo Google MapsTM. Com o uso deste ambiente pode-se: quantificar as doses recebidas pelas pessoas; ter uma distribuição espacial das pessoas contaminadas; estimar o número de indivíduos contaminados; estimar o impacto na rede de saúde; estimar impactos ambientais; gerar zonas de exclusão; construir cenários alternativos; treinar pessoal técnico para lidar com acidentes radiológicos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho está inserido no campo da Geomática e se concentra, mais especificamente, no estudo de métodos para exploração e seleção de rotas em espaços geográficos sem delimitação prévia de vias trafegáveis. As atividades que poderiam se beneficiar de estudos desse tipo estão inseridas em áreas da engenharia, logística e robótica. Buscou-se, com as pesquisas realizadas nesse trabalho, elaborar um modelo computacional capaz de consultar as informações de um terreno, explorar uma grande quantidade de rotas viáveis e selecionar aquelas rotas que oferecessem as melhores condições de trajetória entre dois pontos de um mapa. Foi construído um sistema a partir do modelo computacional proposto para validar sua eficiência e aplicabilidade em diferentes casos de estudo. Para que esse sistema fosse construído, foram combinados conceitos de sistemas baseados em agentes, lógica nebulosa e planejamento de rotas em robótica. As informações de um terreno foram organizadas, consumidas e apresentadas pelo sistema criado, utilizando mapas digitais. Todas as funcionalidades do sistema foram construídas por meio de software livre. Como resultado, esse trabalho de pesquisa disponibiliza um sistema eficiente para o estudo, o planejamento ou a simulação de rotas sobre mapas digitais, a partir de um módulo de inferência nebuloso aplicado à classificação de rotas e um módulo de exploração de rotas baseado em agentes autônomos. A perspectiva para futuras aplicações utilizando o modelo computacional apresentado nesse trabalho é bastante abrangente. Acredita-se que, a partir dos resultados alcançados, esse sistema possa ajudar a reduzir custos e automatizar equipamentos em diversas atividades humanas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of medical devices could be very much improved if robust tools were available for computational simulation of tissue response to the presence of the implant. Such tools require algorithms to simulate the response of tissues to mechanical and chemical stimuli. Available methodologies include those based on the principle of mechanical homeostasis, those which use continuum models to simulate biological constituents, and the cell-centred approach, which models cells as autonomous agents. In the latter approach, cell behaviour is governed by rules based on the state of the local environment around the cell; and informed by experiment. Tissue growth and differentiation requires simulating many of these cells together. In this paper, the methodology and applications of cell-centred techniques-with particular application to mechanobiology-are reviewed, and a cell-centred model of tissue formation in the lumen of an artery in response to the deployment of a stent is presented. The method is capable of capturing some of the most important aspects of restenosis, including nonlinear lesion growth with time. The approach taken in this paper provides a framework for simulating restenosis; the next step will be to couple it with more patient-specific geometries and quantitative parameter data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Norms constitute a powerful coordination mechanism among heterogeneous agents. In this paper, we propose a rule language to specify and explicitly manage the normative positions of agents (permissions, prohibitions and obligations), with which distinct deontic notions and their relationships can be captured. Our rule-based formalism includes constraints for more expressiveness and precision and allows to supplement (and implement) electronic institutions with norms. We also show how some normative aspects are given computational interpretation. © 2008 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autonomous agents may encapsulate their principals' personal data attributes. These attributes may be disclosed to other agents during agent interactions, producing a loss of privacy. Thus, agents need self-disclosure decision-making mechanisms to autonomously decide whether disclosing personal data attributes to other agents is acceptable or not. Current self-disclosure decision-making mechanisms consider the direct benefit and the privacy loss of disclosing an attribute. However, there are many situations in which the direct benefit of disclosing an attribute is a priori unknown. This is the case in human relationships, where the disclosure of personal data attributes plays a crucial role in their development. In this paper, we present self-disclosure decision-making mechanisms based on psychological findings regarding how humans disclose personal information in the building of their relationships. We experimentally demonstrate that, in most situations, agents following these decision-making mechanisms lose less privacy than agents that do not use them. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a complete interactive system en- abled to detect human laughs and respond appropriately, by integrating the information of the human behavior and the context. Furthermore, the impact of our autonomous laughter-aware agent on the humor experience of the user and interaction between user and agent is evaluated by sub- jective and objective means. Preliminary results show that the laughter-aware agent increases the humor experience (i.e., felt amusement of the user and the funniness rating of the film clip), and creates the notion of a shared social experience, indicating that the agent is useful to elicit posi- tive humor-related affect and emotional contagion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Threat prevention with limited security resources is a challenging problem. An optimal strategy is to eectively predict attackers' targets (or goals) based on current available information, and use such predictions to prevent (or disrupt) their planned attacks. In this paper, we propose a game-theoretic framework to address this challenge which encompasses the following three elements. First, we design a method to analyze an attacker's types in order to determine the most plausible type of an attacker. Second, we propose an approach to predict possible targets of an attack and the course of actions that the attackers may take even when the attackers' types are ambiguous. Third, a game-theoretic based strategy is developed to determine the best protection actions for defenders (security resources).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.