980 resultados para auditory scene analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological systems have facility to capture salient object(s) in a given scene, but it is still a difficult task to be accomplished by artificial vision systems. In this paper a visual selection mechanism based on the integrate and fire neural network is proposed. The model not only can discriminate objects in a given visual scene, but also can deliver focus of attention to the salient object. Moreover, it processes a combination of relevant features of an input scene, such as intensity, color, orientation, and the contrast of them. In comparison to other visual selection approaches, this model presents several interesting features. It is able to capture attention of objects in complex forms, including those linearly nonseparable. Moreover, computer simulations show that the model produces results similar to those observed in natural vision systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We address the problem of virtual-videoconferencing. The proposed solution is effected in terms of a generic framework based on an in-house Virtual Reality system. The framework is composed of a number of distinct components: model acquisition, head tracking, expression analysis, network transmission and avatar reconstruction. The framework promises to provide a unique, cheap, and fast system for avatar construction, transmission and animation. This approach affords a conversion from the traditional video stream approach to the management of an avatar remotely and consequently makes minimal demands on network resources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of determining which 3D shape is present, and more importantly, the dimensions of the shape in a scene. This is performed in an active vision system because it reduces the complexity of the problem through the use of gaze stabilization, choice of foveation point, and selective processing by adaptively processing regions of interest. In our case, only a small number of equations and parameters are needed for each shape and these are incorporated into functional descriptions of the shapes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of determening which 3D shape is present, and more importantly, the dimensions of the shape within a scene. This is performed in an active vision system because it reduces the complexity of the problem through the use of gaze stabilisation, choice of foveation point and selective processing by adaptively processing regions of interest. In our case only a small number of equations and parameters are needed for each shape. For example, a container has width and height. These are incorporated into functional descriptions of the shapes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vocal nodules constitute the major cause of dysphonia during childhood. Auditory-perceptual and acoustic vocal analyses have been used to differentiate vocal nodules from normal voice in children.Purpose: To study the value of auditory-perceptual and acoustic vocal analyses in assessments of children with nodules.Design: Diagnostic test study.Patients and interventions: A comparative study was carried out including 100 children with videolaryngoscopic diagnosis of vocal nodules (nodule group-NG); and 100 children without vocal symptoms and with normal videolaryngoscopic exams (control group-CG). The age range of both groups was between 4 and 11 years. All children underwent auditory-perceptual vocal analyses (GRBASI scale); maximum phonation time and s/z ratio were calculated, and acoustic vocal analysis (MDVP software) were carried out.Results: There was no difference in the values of maximum phonation time and s/z ratio between groups. Auditory-perceptual analysis indicated greater compromising of voice parameters for NG, compared to CG: G (79 versus 24), R (53 versus 3), B (67 versus 23) and S (35 versus 1). The values of acoustic parameters jitter, PPQ shimmer, APQ, NHR and SPI were higher for NG for CG. The parameter f0 did not differ between groups.Conclusion: Compromising of auditory-perceptual (G, R, B and S) and acoustic vocal parameters (jitter, PPQ shimmer, APQ, NHR and SPI) was greater for children with nodules than for those of the control group, which makes them important methods for assessing child dysphonia. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The repetition should be understood as the property of mass cultural products, originated from the need to minimize the dispersion of the audience in their enjoyment. Based on this assumption, this paper measures the rate of iteration manifested in the scripts of the following serial fictions: Duas Caras, A Grande Família and House of Cards. Established itself as a method of scene analysis proposed by McKee (2008), questioned whether the lack of classical education of the public and rescued the forms assumed by repeating the melodrama, romance-serial and dramaturgy: asides, monologues, confidences and planar scenes. The proposal was applied in two scripts for each of the aforementioned productions. Considering the data collected, it appears that there was reduction in repeat products offered on demand thanks to the possibility of handling the flow and the attention given receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arthritis may affect the larynx and produce symptoms such as hoarseness and vocal fatigue. Objective: This paper aimed to evaluate the laryngeal manifestations of rheumatoid arthritis. Methods: This is prospective study assessed 27 patients with rheumatoid arthritis with the aid of videolaryngostroboscopy, auditory-perceptual analysis of the speech using the GIRBAS scale, acoustic analysis and the Voice Handicap Index questionnaire. Results: Nineteen patients had laryngeal complaints, the main ones being intermittent dysphonia and sensation of a foreign body in the throat. The most frequent laryngoscopical finding was overlapping arytenoids. Three patients had low pitch, nine patients had mild dysphonia and roughness. Median acoustic measures were: F0, 198.39 Hz; Jitter, 0.815; Shimmer, 4.915; and NHR, 0.144. Regarding the Voice Handicap Index, the median score was zero in all domains. There was a statistically significant correlation between voice complaints and the domains of this index. Functional classes were significantly correlated to: overlapping arytenoids (p = 0.001), PPQ (p = 0.0257), Shimmer (p = 0.0295), APQ (p = 0.0195), and the VHI physical (p = 0.0227) and total domains (p = 0.0425). Conclusion: Laryngeal complaints were reported by 70.4% of the patients and laryngoscopical alterations were observed in 48% of the subjects. Voice acoustic evaluation and self-perception were altered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the decomposition of biological material, hydrogen sulphide (H(2)S) is produced. In low concentrations, the well-known smell of "rotten eggs" is associated with H(2)S. In higher concentrations, H(2)S is an odourless and colourless gas that may cause rapid loss of consciousness, neurological and respiratory depression and imminent death-"... like a stroke of lightening". Hydrogen sulphide poisoning is an un-common incident that is often associated with colleague fatalities. In this study, 4 fatal accidents with 10 deceased victims are reported and the morphological and phenomenological aspects are presented. In these cases, the morphological findings, namely, discolouration of the livores, pulmonary pathologies and sub-mucosal or sub-serosal congestion bleeding were found in nearly all cases. Also the impending threat for colleagues, first aid helpers and professional rescue teams is demonstrated. The suspicion of a fatal H(2)S intoxication should be based on a precise scene analysis with respect to the possibility of life-threatening H(2)S intoxication for the helpers, the typical scent of rotten eggs, which may be noted on the corpses and the abovementioned morphological findings. The diagnosis should be confirmed by a qualitative and, if possible, quantitative analysis of H(2)S.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.