875 resultados para auditory cues


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This work investigates the nature of the comprehension impairment in Wernicke’s aphasia, by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. Wernicke’s aphasia, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. Methods: We examined analysis of basic acoustic stimuli in Wernicke’s aphasia participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in “moving ripple” stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Results: Participants with Wernicke’s aphasia showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both frequency and dynamic modulation detection correlated significantly with auditory comprehension abilities in the Wernicke’s aphasia participants. Conclusion: These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectrotemporal nonverbal stimuli in Wernicke’s aphasia, which may have a causal contribution to the auditory language comprehension impairment Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether there are differences in the Speech-Evoked Auditory Brainstem Response among children with Typical Development (TD), (Central) Auditory Processing Disorder (C) APD, and Language Impairment (LI). The speech-evoked Auditory Brainstem Response was tested in 57 children (ages 6-12). The children were placed into three groups: TD (n = 18), (C)APD (n = 18) and LI (n = 21). Speech-evoked ABR were elicited using the five-formant syllable/da/. Three dimensions were defined for analysis, including timing, harmonics, and pitch. A comparative analysis of the responses between the typical development children and children with (C)APD and LI revealed abnormal encoding of the speech acoustic features that are characteristics of speech perception in children with (C)APD and LI, although the two groups differed in their abnormalities. While the children with (C)APD might had a greater difficulty distinguishing stimuli based on timing cues, the children with LI had the additional difficulty of distinguishing speech harmonics, which are important to the identification of speech sounds. These data suggested that an inefficient representation of crucial components of speech sounds may contribute to the difficulties with language processing found in children with LI. Furthermore, these findings may indicate that the neural processes mediated by the auditory brainstem differ among children with auditory processing and speech-language disorders. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edges are important cues defining coherent auditory objects. As a model of auditory edges, sound on- and offset are particularly suitable to study their neural underpinnings because they contrast a specific physical input against no physical input. Change from silence to sound, that is onset, has extensively been studied and elicits transient neural responses bilaterally in auditory cortex. However, neural activity associated with sound onset is not only related to edge detection but also to novel afferent inputs. Edges at the change from sound to silence, that is offset, are not confounded by novel physical input and thus allow to examine neural activity associated with sound edges per se. In the first experiment, we used silent acquisition functional magnetic resonance imaging and found that the offset of pulsed sound activates planum temporale, superior temporal sulcus and planum polare of the right hemisphere. In the planum temporale and the superior temporal sulcus, offset response amplitudes were related to the pulse repetition rate of the preceding stimulation. In the second experiment, we found that these offset-responsive regions were also activated by single sound pulses, onset of sound pulse sequences and single sound pulse omissions within sound pulse sequences. However, they were not active during sustained sound presentation. Thus, our data show that circumscribed areas in right temporal cortex are specifically involved in identifying auditory edges. This operation is crucial for translating acoustic signal time series into coherent auditory objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of the auditory modality in virtual reality environments is known to promote the sensations of immersion and presence. However it is also known from psychophysics studies that auditory-visual interaction obey to complex rules and that multisensory conflicts may disrupt the adhesion of the participant to the presented virtual scene. It is thus important to measure the accuracy of the auditory spatial cues reproduced by the auditory display and their consistency with the spatial visual cues. This study evaluates auditory localization performances under various unimodal and auditory-visual bimodal conditions in a virtual reality (VR) setup using a stereoscopic display and binaural reproduction over headphones in static conditions. The auditory localization performances observed in the present study are in line with those reported in real conditions, suggesting that VR gives rise to consistent auditory and visual spatial cues. These results validate the use of VR for future psychophysics experiments with auditory and visual stimuli. They also emphasize the importance of a spatially accurate auditory and visual rendering for VR setups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of moving sound sources have strong implications on the listener's distance perception and the estimation of velocity. Modifications of the typical sound emissions as they are currently occurring due to the tendency towards electromobility have an impact on the pedestrian's safety in road traffic. Thus, investigations of the relevant cues for velocity and distance perception of moving sound sources are not only of interest for the psychoacoustic community, but also for several applications, like e.g. virtual reality, noise pollution and safety aspects of road traffic. This article describes a series of psychoacoustic experiments in this field. Dichotic and diotic stimuli of a set of real-life recordings taken from a passing passenger car and a motorcycle were presented to test subjects who in turn were asked to determine the velocity of the object and its minimal distance from the listener. The results of these psychoacoustic experiments show that the estimated velocity is strongly linked to the object's distance. Furthermore, it could be shown that binaural cues contribute significantly to the perception of velocity. In a further experiment, it was shown that - independently of the type of the vehicle - the main parameter for distance determination is the maximum sound pressure level at the listener's position. The article suggests a system architecture for the adequate consideration of moving sound sources in virtual auditory environments. Virtual environments can thus be used to investigate the influence of new vehicle powertrain concepts and the related sound emissions of these vehicles on the pedestrians' ability to estimate the distance and velocity of moving objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The barn owl (Tyto alba) uses interaural time difference (ITD) cues to localize sounds in the horizontal plane. Low-order binaural auditory neurons with sharp frequency tuning act as narrow-band coincidence detectors; such neurons respond equally well to sounds with a particular ITD and its phase equivalents and are said to be phase ambiguous. Higher-order neurons with broad frequency tuning are unambiguously selective for single ITDs in response to broad-band sounds and show little or no response to phase equivalents. Selectivity for single ITDs is thought to arise from the convergence of parallel, narrow-band frequency channels that originate in the cochlea. ITD tuning to variable bandwidth stimuli was measured in higher-order neurons of the owl’s inferior colliculus to examine the rules that govern the relationship between frequency channel convergence and the resolution of phase ambiguity. Ambiguity decreased as stimulus bandwidth increased, reaching a minimum at 2–3 kHz. Two independent mechanisms appear to contribute to the elimination of ambiguity: one suppressive and one facilitative. The integration of information carried by parallel, distributed processing channels is a common theme of sensory processing that spans both modality and species boundaries. The principles underlying the resolution of phase ambiguity and frequency channel convergence in the owl may have implications for other sensory systems, such as electrolocation in electric fish and the computation of binocular disparity in the avian and mammalian visual systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the “cocktail party effect”) are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Onset asynchrony is an important cue for auditory scene analysis. For example, a harmonic of a vowel that begins before the other components contributes less to the perceived phonetic quality. This effect was thought primarily to involve high-level grouping processes, because the contribution can be partly restored by accompanying the leading portion of the harmonic (precursor) with a synchronous captor tone an octave higher, and hence too remote to influence adaptation of the auditory-nerve response to that harmonic. However, recent work suggests that this restoration effect arises instead from inhibitory interactions relatively early in central auditory processing. The experiments reported here have reevaluated the role of adaptation in grouping by onset asynchrony and explored further the inhibitory account of the restoration effect. Varying the frequency of the precursor in the range ± 10% relative to the vowel harmonic (Experiment 1), or introducing a silent interval from 0 to 320 ms between the precursor and the vowel (Experiment 2), both produce effects on vowel quality consistent with those predicted from peripheral adaptation or recovery from it. However, there were some listeners for whom even the smallest gap largely eliminated the effect of the precursor. Consistent with the inhibitory account of the restoration effect, a contralateral pure tone whose frequency is close to that of the precursor is highly effective at restoring the contribution of the asynchronous harmonic (Experiment 3). When the frequencies match, lateralization cues arising from binaural fusion of the precursor and contralateral tone may also contribute to this restoration. (PsycINFO Database Record (c) 2012 APA, all rights reserved)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a series of experiments investigating both sequential and concurrent auditory grouping in implant listeners. Some grouping cues used by normal-hearing listeners should also be available to implant listeners, while others (e.g. fundamental frequency) are unlikely to be useful. As poor spectral resolution may also limit implant listeners’ performance, the spread of excitation in the cochlea was assessed using Neural Response Telemetry (NRT) and the results were related to those of the perceptual tasks. Experiment 1 evaluated sequential segregation of alternating tone sequences; no effect of rate or evidence of perceptual ambiguity was found, suggesting that automatic stream segregation had not occurred. Experiment 2 was an electrode pitch-ranking task; some relationship was found between pitch-ranking judgements (especially confidence scores) and reported segregation. Experiment 3 used a temporal discrimination task; this also failed to provide evidence of automatic stream segregation, because no interaction was found between the effects of sequence length and electrode separation. Experiment 4 explored schema-based grouping using interleaved melody discrimination; listeners were not able to segregate targets and distractors based on pitch differences, unless accompanied by substantial level differences. Experiment 5 evaluated concurrent segregation in a task requiring the detection of level changes in individual components of a complex tone. Generally, large changes were needed and abrupt changes were no easier to detect than gradual ones. In experiment 6, NRT testing confirmed substantially overlapping simulation by intracochlear electrodes. Overall, little or no evidence of auditory grouping by implant listeners was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.

The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.

First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.

My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.

Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.

My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.

In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of species-typical perceptual preferences has been shown to depend on a variety of socially and ecologically derived sensory stimulation during both the pre- and postnatal periods. The prominent mechanism behind the development of these seemingly innate tendencies in young organisms has been hypothesized to be a domain-general pan-sensory selectivity process referred to as perceptual narrowing, whereby regularly experienced sensory stimuli are honed in upon, while simultaneously losing the ability to effectively discriminate between atypical or unfamiliar sensory stimulation. Previous work with precocial birds has been successful in preventing the development of species-typical perceptual preferences by denying the organism typical levels of social and/or self-produced stimulation. The current series of experiments explored the mechanism of perceptual narrowing to assess the malleability of a species-typical auditory preference in avian embryos. By providing a variety of different unimodal and bimodal presentations of a mixed-species vocalizations at the onset of prenatal auditory function, the following project aimed to 1) keep the perceptual window from narrowing, thereby interfering with the development of a species-typical auditory preference, 2) investigate how long differential prenatal stimulation can keep the perceptual window open postnatally, 3) explore how prenatal auditory enrichment effected preferences for novelty, and 4) assess whether prenatal auditory perceptual narrowing is affected by modality specific or amodal stimulus properties during early development. Results indicated that prenatal auditory enrichment significantly interferes with the emergence of a species-typical auditory preference and increases openness to novelty, at least temporarily. After accruing postnatal experience in an environment rich with species-typical auditory and multisensory cues, the effect of prenatal auditory enrichment rapidly was found to rapidly fade. Prenatal auditory enrichment with extraneous non-synchronous light exposure was shown to both keep the perceptual narrowing window open and impede learning in the postnatal environment, following hatching. Results are discussed in light of the role experience plays in perceptual narrowing during the perinatal period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The reasons that a patient has to start treatment, their “Cues to Action”, are important for determining subsequent health behaviours. Cues to action are an explicit component of the Health Belief Model of CPAP acceptance adherence. At present there is no scale available to measure this construct for individuals with Obstructive Sleep Apnoea (OSA). This paper aims to develop, validate and describe responding patterns within an OSA patient sample to the Cues to CPAP Use Questionnaire (CCUQ).----- Method: Participants were 63 adult patients diagnosed with OSA who had never tried CPAP when initially recruited. The CCUQ was completed at one month after being prescribed CPAP.----- Results: Exploratory factor analysis (EFA) showed a three factor structure of the 9-item CCUQ, with “Health Cues”, “Partner Cues” and “Health Professional Cues” subscales accounting for 59.91% of the total variance. The CCUQ demonstrated modest internal consistency and split-half reliability. The questionnaire is brief and user-friendly, with readability at a 7th grade level. The most frequently endorsed cues for starting CPAP were Health Professional Cues (prompting by the sleep physician) and Health Cues such as tiredness and concern about health outcomes.----- Conclusions: This study validates a measure of an important motivational component of the Health Belief Model. Health Professional Cues and internal Health Cues were reported to be the most important prompts to commence CPAP by this patient sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The classic study of Sumby and Pollack (1954, JASA, 26(2), 212-215) demonstrated that visual information aided speech intelligibility under noisy auditory conditions. Their work showed that visual information is especially useful under low signal-to-noise conditions where the auditory signal leaves greater margins for improvement. We investigated whether simulated cataracts interfered with the ability of participants to use visual cues to help disambiguate the auditory signal in the presence of auditory noise. Methods: Participants in the study were screened to ensure normal visual acuity (mean of 20/20) and normal hearing (auditory threshold ≤ 20 dB HL). Speech intelligibility was tested under an auditory only condition and two visual conditions: normal vision and simulated cataracts. The light scattering effects of cataracts were imitated using cataract-simulating filters. Participants wore blacked-out glasses in the auditory only condition and lens-free frames in the normal auditory-visual condition. Individual sentences were spoken by a live speaker in the presence of prerecorded four-person background babble set to a speech-to-noise ratio (SNR) of -16 dB. The SNR was determined in a preliminary experiment to support 50% correct identification of sentence under the auditory only conditions. The speaker was trained to match the rate, intensity and inflections of a prerecorded audio track of everyday speech sentences. The speaker was blind to the visual conditions of the participant to control for bias.Participants’ speech intelligibility was measured by comparing the accuracy of their written account of what they believed the speaker to have said to the actual spoken sentence. Results: Relative to the normal vision condition, speech intelligibility was significantly poorer when participants wore simulated catarcts. Conclusions: The results suggest that cataracts may interfere with the acquisition of visual cues to speech perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Managing livestock movement in extensive systems has environmental and production benefits. Currently permanent wire fencing is used to control cattle; this is both expensive and inflexible. Cattle are known to respond to auditory and visual cues and we investigated whether these can be used to manipulate their behaviour. Twenty-five Belmont Red steers with a mean live weight of 270kg were each randomly assigned to one of five treatments. Treatments consisted of a combination of cues (audio, tactile and visual stimuli) and consequence (electrical stimulation). The treatments were electrical stimulation alone, audio plus electrical stimulation, vibration plus electrical stimulation, light plus electrical stimulation and electrified electric fence (6kV) plus electrical stimulation. Cue stimuli were administered for 3s followed immediately by electrical stimulation (consequence) of 1kV for 1s. The experiment tested the operational efficacy of an on-animal control or virtual fencing system. A collar-halter device was designed to carry the electronics, batteries and equipment providing the stimuli, including audio, vibration, light and electrical of a prototype virtual fencing device. Cattle were allowed to travel along a 40m alley to a group of peers and feed while their rate of travel and response to the stimuli were recorded. The prototype virtual fencing system was successful in modifying the behaviour of the cattle. The rate of travel of cattle along the alley demonstrated the large variability in behavioural response associated with tactile, visual and audible cues. The experiment demonstrated virtual fencing has potential for controlling cattle in extensive grazing systems. However, larger numbers of cattle need to be tested to derive a better understanding of the behavioural variance. Further controlled experimental work is also necessary to quantify the interaction between cues, consequences and cattle learning.