588 resultados para attentional blink
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset—the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from ‘‘biased competition’’, with the top–down bias being generated by parietal–frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
There are difficulties with utilising self- report and physiological measures of assessment amongst forensic populations. This study investigates implicit based measures amongst sexual offenders, nonsexual offenders and low risk samples. Implicit measurement is a term applied to measurement methods that makes it difficult to influence responses through conscious control. The test battery includes the Implicit Association Test (IAT), Rapid Serial Visual Presentation (RSVP), Viewing Time (VT) and the Structured Clinical interview for disorders. The IAT proposes that people will perform better on a task when they depend on well-practiced cognitive associations. The RSVP task requires participants to identify a single target image that is presented amongst a series of rapidly presented visual images. RSVP operates on the premise that if two target images are presented within 500milliseconds of each other, the possibility that the participant will recognize the second target is significantly reduced when the first target is of salience to the individual. This is the attentional blink phenomenon. VT is based on the principle that people will look longer at images that are of salience. Results showed that on the VT task, child sexual offenders took longer to view images of children than low risk groups. Nude over clothed images induced a greater attentional blink amongst low risk and offending samples on the RSVP task. Sexual offenders took longer than low risk groups on word pairing tasks where sexual words were paired with adult words on the IAT. The SCID highlighted differences between the offending and non offending groups on the sub scales for personality disorders. More erotic stimulus items on the VT and RSVP measures is recommended to better differentiate sexual preference between offending and non offending samples. A pictorial IAT is recommended. Findings provide the basis for further development of implicit measures within the assessment of sexual offenders.
Resumo:
Nowadays, the idea of a reciprocal influence of physiological and psychological processes seems to be widely accepted. For instance, current theories of embodied emotion suggest that knowledge about an emotion concept involves simulations of bodily experienced emotional states relevant to the concept. In line with this framework, the present study investigated whether actual levels of physiological arousal interact with the processing of emotional words. Participants performed 2 blocks of an attentional blink task, once after a cycling session (increased arousal) and once after a relaxation session (reduced arousal). Concretely, participants were instructed to detect and report 2 target words (T1 and T2) presented among a series of nonword distractors. T1 and T2 were either neutral, high arousal, or low arousal words. Results revealed that increased physiological arousal led to improved reports of high arousal T2 words, whereas reduced physiological arousal led to improved reports of low arousal T2 words. Neutral T2 remained unaffected by the arousing conditions. These findings emphasize that actual levels of physiological arousal modulate the cognitive access to arousal (in-)congruent emotional concepts and suggest a direct grounding of emotion knowledge in our bodily systems of arousal.
Resumo:
Le phénomène de Clignement Attentionnel (Attentional Blink, AB), fait référence à une diminution transitoire du rapport exact d’une deuxième cible (C2) si celle-ci est présentée trop tôt après une première cible (C1) lors d’une présentation visuelle sérielle rapide (rapid serial visual presentation, RSVP), et ce, quand les deux cibles doivent être rapportées. Cette étude a examiné l’existence possible d’asymétries hémisphèriques dans le traitement attentionnel ainsi que l’éventualité que la présentation de cibles à deux hémisphères différents puisse diminuer le AB chez des participants neurologiquement sains et l’abolir dans le cas d’un patient callosotomisé. Pour ce faire, nous avons employé un paradigme modifié du AB dans lequel les cibles pouvaient apparaître dans n’importe quelle de quatre RSVP, une dans chaque quadrant du champ visuel, pour permettre des essais dans lesquels les deux cibles puissent être présentées au même hémisphère et d’autres où chaque cible était présentée à un hémisphère différent. Bien que nous n’ayons trouvé aucune diminution de l’effet AB lors de présentation inter-hémisphérique, dans les deux populations à l’étude, le taux de bonnes réponses globales à la deuxième cible était plus élevé quand les cibles étaient présentées à des hémisphères différents. Nous avons également trouvé un avantage de l’hémisphère gauche chez le patient callosotomisé.
Resumo:
L’influence de la couleur dans les mécanismes perceptuels et attentionnels a été étudiée. Quatre couleurs (le rouge, le vert, le bleu et le jaune) ont été calibrées individuellement à travers la technique heterochromatic flicker photometry. Suivant cela, les participants ont déployé leur attention à une cible (un cercle de couleur avec une ligne orientée). Les données électrophysiologiques ont été enregistrées pendant que les sujets performaient la tâche de recherche visuelle, et les analyses ont été basées sur les potentiels évoqués (PÉs). Trois composantes des PÉs ont été examinées : la posterior contralateral positivity (Ppc); la N2pc, reflétant le déploiement de l’attention visuo-spatiale et la temporal and contralateral positivity (Ptc). Des conditions dans lesquelles la cible était bleu ou rouge, lorsque comparées à des conditions avec une cible jaune ou verte suscitaient une N2pc plus précoce. Une amplitude plus élevée est aussi observée pour les cibles rouges pour les composantes Ppc et Ptc, reflétant une sélectivité pré-attentionelle. Ces résultats suggèrent de la prudence dans l’interprétation de données comparant des cibles de différentes couleurs dans des tâches de PÉs, et ce même lorsque les couleurs sont équiluminantes.
Resumo:
In this paper, we introduce a special issue about unique and shared mechanisms underlying the performance limitations observed in dual tasks. In particular, the relationship between task-switching costs, the attentional-blink effect, and the psychological refractory period effect is reviewed. These costs are traditionally attributed to fixed and unique capacity limitations for task set reconfiguration, target identification, and response selection, respectively However, we argue that more global attentional processes play a role that cuts across these paradigms. This is reason for a more paradigm-independent approach to processing limitations in dual tasks.
Resumo:
We investigated whether it is possible to control the temporal window of attention used to rapidly integrate visual information. To study the underlying neural mechanisms, we recorded ERPs in an attentional blink task, known to elicit Lag-1 sparing. Lag-1 sparing fosters joint integration of the two targets, evidenced by increased order errors. Short versus long integration windows were induced by showing participants mostly fast or slow stimuli. Participants expecting slow speed used a longer integration window, increasing joint integration. Difference waves showed an early (200 ms post-T2) negative and a late positive modulation (390 ms) in the fast group, but not in the slow group. The modulations suggest the creation of a separate event for T2, which is not needed in the slow group, where targets were often jointly integrated. This suggests that attention can be guided by global expectations of presentation speed within tens of milliseconds.
Resumo:
Short-term memory (STM) has often been considered to be a central resource in cognition. This study addresses its role in rapid serial visual presentation (RSVP) tasks tapping into temporal attention-the attentional blink (AB). Various STM operations are tested for their impact on performance and, in particular, on the AB. Memory tasks were found to exert considerable impact on general performance but the size of the AB was more or less immune to manipulations of STM load. Likewise, the AB was unaffected by manipulating the match between items held in STM and targets or temporally close distractors in the RSVP stream. The emerging picture is that STM resources, or their lack, play no role in the AB. Alternative accounts assuming serial consolidation, selection for action, and distractor-induced task-set interference are discussed.
Resumo:
Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.
Resumo:
The present report reviews behavioural, electroencephalographic, and especially magnetoencephalographic findings on the cortical mechanisms underlying attentional processes that separate targets from distractors and that ensure durable target representations for goal-directed action. A common way of investigation is to observe the system’s overt and covert behaviour when capacity limitations are reached. Here we focus on the aspect of temporally enhanced processing load, namely on performance deficits occurring under rapid-serial-visual-presentation (RSVP) conditions. The most prominent of these deficits is the so-called “attentional blink” (AB) effect. We first report MEG findings with respect to the time course of activation that shows modulations around 300 ms after target onset which reflect demands and success of target consolidation. Then, findings regarding long-range inter-area phase synchronization are reported that are hypothesized to mediate communication within the attentional network. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioural performance. Furthermore, enhanced vigilance of the system elicits systematically increased synchronization indices. A hypothetical framework is sketched out that aims at explaining limitations in multiple target consolidation under RSVP conditions.
Resumo:
We investigated the nature of resource limitations during visual target processing by imposing high temporal processing demands on the cognitive system. This was achieved by embedding target stimuli into rapid-serial-visual-presentation-streams (RSVP). In RSVP streams, it is difficult to report the second of two targets (T2) if the second follows the first (T1) within 500 ms. This effect is known as the attentional blink (AB). For the AB to occur, it is essential that T1 is followed by a mask, as without such a stimulus, the AB is significantly attenuated. Usually, it is thought that T1 processing is delayed by the mask, which in turn delays T2 processing, increasing the likelihood for T2 failures (AB). Predictions regarding amplitudes and latencies of cortical responses (M300, the magnetic counterpart to the P300) to targets were tested by investigating the neurophysiological effects of the post-T1 item (mask) by means of magnetoencephalography (MEG). Cortical M300 responses to targets drawn from prefrontal sources – areas associated with working memory – revealed accelerated T1 yet delayed T2 processing with an intervening mask. The explanation we are proposing assumes that “protection” of ongoing T1 processing necessitated by the occurrence of the mask suppresses other activation patterns, which boosts T1 yet also hinders further processing. Our data shed light on the mechanisms employed by the human brain for ensuring visual target processing under high temporal processing demands, which is hypothesized to occur at the expense of subsequently presented information.
Resumo:
If humans monitor streams of rapidly presented (approximately 100-ms intervals) visual stimuli, which are typically specific single letters of the alphabet, for two targets (T1 and T2), they often miss T2 if it follows T1 within an interval of 200-500 ms. If T2 follows T1 directly (within 100 ms; described as occurring at 'Lag 1'), however, performance is often excellent: the so-called 'Lag-1 sparing' phenomenon. Lag-1 sparing might result from the integration of the two targets into the same 'event representation', which fits with the observation that sparing is often accompanied by a loss of T1-T2 order information. Alternatively, this might point to competition between the two targets (implying a trade-off between performance on T1 and T2) and Lag-1 sparing might solely emerge from conditional data analysis (i.e. T2 performance given T1 correct). We investigated the neural correlates of Lag-1 sparing by carrying out magnetoencephalography (MEG) recordings during an attentional blink (AB) task, by presenting two targets with a temporal lag of either 1 or 2 and, in the case of Lag 2, with a nontarget or a blank intervening between T1 and T2. In contrast to Lag 2, where two distinct neural responses were observed, at Lag 1 the two targets produced one common neural response in the left temporo-parieto-frontal (TPF) area but not in the right TPF or prefrontal areas. We discuss the implications of this result with respect to competition and integration hypotheses, and with respect to the different functional roles of the cortical areas considered. We suggest that more than one target can be identified in parallel in left TPF, at least in the absence of intervening nontarget information (i.e. masks), yet identified targets are processed and consolidated as two separate events by other cortical areas (right TPF and PFC, respectively).
Resumo:
Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets
Resumo:
Holistic face perception, i.e. the mandatory integration of featural information across the face, hasbeen considered to play a key role when recognizing emotional face expressions (e.g., Tanaka et al.,2002). However, despite their early onset holistic processing skills continue to improvethroughout adolescence (e.g., Schwarzer et al., 2010) and therefore might modulate theevaluation of facial expressions. We tested this hypothesis using an attentional blink (AB)paradigm to compare the impact of happy, fearful and neutral faces in adolescents (10–13 years)and adults on subsequently presented neutral target stimuli (animals, plants and objects) in a rapidserial visual presentation stream. Adolescents and adults were found to be equally reliable whenreporting the emotional expression of the face stimuli. However, the detection of emotional butnot neutral faces imposed a significantly stronger AB effect on the detection of the neutral targetsin adults compared to adolescents. In a control experiment we confirmed that adolescents ratedemotional faces lower in terms of valence and arousal than adults. The results suggest a protracteddevelopment of the ability to evaluate facial expressions that might be attributed to the latematuration of holistic processing skills.