988 resultados para atlantic multidecadal oscillation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidecadal variations in Atlantic sea surface temperatures (SST) influence the climate of the Northern Hemisphere. However, prior to the instrumental time period, information on multidecadal climate variability becomes limited, and there is a particular scarcity of sufficiently resolved SST reconstructions. Here, we present an eastern tropical North Atlantic reconstruction of SSTs based on foraminiferal (Globigerinoides ruber pink) Mg/Ca ratios that resolves multidecadal variability over the past 1700 years. Spectral power in the multidecadal band (50 to 70 years period) is significant over several time intervals suggesting that the Atlantic Multidecadal Oscillation (AMO) has been influencing local SST. Since our data exhibit high scatter the absence of multidecadal variability in the remaining record does not exclude the possibility that SST variations on this time scale might have been present without being detected in our data. Cooling by ~0.5 °C takes place between about AD 1250 and AD 1500; while this corresponds to the inception of the Little Ice Age (LIA), the end of the LIA is not reflected in our record and SST remains relatively low. This transition to cooler SSTs parallels the previously reconstructed shift in the North Atlantic Oscillation towards a low pre-20th century mean state and possibly reflects common solar forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continental and marine conditions during the last millennium off Porto, Portugal (the southern pole of the North Atlantic Oscillation, NAO), are reconstructed from a sediment archive through a high-resolution multiproxy study and instrumental evidence. Results show multidecadal variability and sea surface temperatures (SSTs) that correlate well with previously published land and sea-based Northern Hemisphere temperature records, and appear to be responding to long-term solar insolation variability. Precipitation was negatively correlated with the NAO, whereas strong flooding events occurred at times of marked climate cooling (AD 1100-1150 and 1400-1470) and transitions in solar activity. AD 1850 marks a major shift in the phytoplankton community associated with a decoupling of d18O records of 3 planktonic foraminifera species. These changes are interpreted as a response to a reduction in the summer and/or annual upwelling and more frequent fall-winter upwelling-like events. This shift's coincidence with a decrease in SST and the increase in coherence between our data and the Atlantic Multidecadal Oscillation (AMO) confirms the connection of the upwelling variability to the North Atlantic Ocean's surface and thermohaline circulation on a decadal scale. The disappearance of this agreement between the AMO and our records beyond AD 1850 and its coincidence with the beginning of the recent rise in atmospheric CO2 supports the hypothesis of a strong anthropogenic effect on the last ~150 yr of the climate record. Furthermore, it raises an important question of the use of instrumental records as the sole calibration data set for climate reconstructions, as these may not provide the best analogue for climate beyond AD 1730.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e. g. North Atlantic Oscillation). The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC) that can later impact low frequency SST (sea surface temperature) variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G) atmosphere-ocean general circulation model (AOGCM). When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Nino Southern Oscillation) variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on the OHC at multiple timescales, leading first to a cooling in the Labrador and Irminger seas, and later on to a North Atlantic warming, associated with a delayed impact on the AMO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South American summer monsoon (SASM) is the main source of precipitation for the most densely populated and agriculturally productive regions of tropical and subtropical South America. Here we investigate the impact of the Atlantic Multidecadal Oscillation (AMO) on the SASM using ~4500 yr long proxy records of the discharge variability of the La Plata River Drainage Basin (PRDB), subtropical South America. We measured the stable oxygen composition of planktic foraminifera (related to the extension of the PRDB plume), and Ti intensity in bulk sediment (related to the source of the terrigenous sediments) from a marine sediment core. Spectral and wavelet analyses of our records indicate an oscillation with period of ~64 yr. We conclude that the observed oscillation reflects variability in the SASM activity associated to the AMO. Sea surface temperature and atmospheric circulation anomalies triggered by the AMO would control the variability in SASM activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuaries are dynamic on many spatial and temporal scales. Distinguishing effects of unpredictable events from cyclical patterns can be challenging but important to predict the influence of press and pulse drivers in the face of climate change. Diatom assemblages respond rapidly to changing environmental conditions and characterize change on multiple time scales. The goals of this research were to 1) characterize diatom assemblages in the Charlotte Harbor watershed, their relationships with water quality parameters, and how they change in response to climate; and 2) use assemblages in sediment cores to interpret past climate changes and tropical cyclone activity. ^ Diatom assemblages had strong relationships with salinity and nutrient concentrations, and a quantitative tool was developed to reconstruct past values of these parameters. Assemblages were stable between the wet and dry seasons, and were more similar to each other than to assemblages found following a tropical cyclone. Diatom assemblages following the storm showed a decrease in dispersion among sites, a pattern that was consistent on different spatial scales but may depend on hydrological management regimes. ^ Analysis of sediment cores from two southwest Florida estuaries showed that locally-developed diatom inference models can be applied with caution on regional scales. Large-scale climate changes were suggested by environmental reconstructions in both estuaries, but with slightly different temporal pacing. Estimates of salinity and nutrient concentrations suggested that major hydrological patterns changed at approximately 5.5 and 3 kyrs BP. A highly temporally-resolved sediment core from Charlotte Harbor provided evidence for past changes that correspond with known climate records. Diatom assemblages had significant relationships with the three-year average index values of the Atlantic Multidecadal Oscillation and the El Niño Southern Oscillation. Assemblages that predicted low salinity and high total phosphorus also had the lowest dispersion and corresponded with some major storms in the known record, which together may provide a proxy for evidence of severe storms in the paleoecological record. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continental shelf adjacent to the Río de la Plata (RdlP) exhibits extremely complex hydrographic and ecological characteristics which are of great socioeconomic importance. Since the long-term environmental variations related to the atmospheric (wind fields), hydrologic (freshwater plume), and oceanographic (currents and fronts) regimes are little known, the aim of this study is to reconstruct the changes in the terrigenous input into the inner continental shelf during the late Holocene period (associated with the RdlP sediment discharge) and to unravel the climatic forcing mechanisms behind them. To achieve this, we retrieved a 10 m long sediment core from the RdlP mud depocenter at 57 m water depth (GeoB 13813-4). The radiocarbon age control indicated an extremely high sedimentation rate of 0.8 cm per year, encompassing the past 1200 years (AD 750-2000). We used element ratios (Ti / Ca, Fe / Ca, Ti / Al, Fe / K) as regional proxies for the fluvial input signal and the variations in relative abundance of salinity-indicative diatom groups (freshwater versus marine-brackish) to assess the variability in terrigenous freshwater and sediment discharges. Ti / Ca, Fe / Ca, Ti / Al, Fe / K and the freshwater diatom group showed the lowest values between AD 850 and 1300, while the highest values occurred between AD 1300 and 1850. The variations in the sedimentary record can be attributed to the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA), both of which had a significant impact on rainfall and wind patterns over the region. During the MCA, a weakening of the South American summer monsoon system (SAMS) and the South Atlantic Convergence Zone (SACZ), could explain the lowest element ratios (indicative of a lower terrigenous input) and a marine-dominated diatom record, both indicative of a reduced RdlP freshwater plume. In contrast, during the LIA, a strengthening of SAMS and SACZ may have led to an expansion of the RdlP river plume to the far north, as indicated by higher element ratios and a marked freshwater diatom signal. Furthermore, a possible multidecadal oscillation probably associated with Atlantic Multidecadal Oscillation (AMO) since AD 1300 reflects the variability in both the SAMS and SACZ systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea surface temperature (SST), marine productivity, and fluvial input have been reconstructed for the last 11.5 calendar (cal) ka B.P. using a high-resolution study of C37 alkenones, coccolithophores, iron content, and higher plant n-alkanes and n-alkan-1-ols in sedimentary sequences from the inner shelf off the Tagus River Estuary in the Portuguese Margin. The SST record is marked by a continuous decrease from 19C, at 10.5 and 7 ka, to 15C at present. This trend is interrupted by a fall from 18C during the Roman and Medieval Warm Periods to 16C in the Little Ice Age. River input was very low in the early Holocene but increased in the last 3 cal ka B.P. in association with an intensification of agriculture and deforestation and possibly the onset of the North Atlantic Oscillation/Atlantic Multidecadal Oscillation modes of variability. River influence must have reinforced the marine cooling trend relative to the lower amplitude in similar latitude sites of the eastern Atlantic. The total concentration of alkenones reflects river-induced productivity, being low in the early Holocene but increasing as river input became more important. Rapid cooling, of 1-2C occurring in 250 years, is observed at 11.1, 10.6, 8.2, 6.9, and 5.4 cal ka B.P. The estimated age of these events matches the ages of equivalent episodes common in the NE Atlantic- Mediterranean region. This synchronicity reveals a common widespread climate feature, which considering the twentieth century analog between colder SSTs and negative North Atlantic Oscillation (NAO), is likely to reflect periods of strong negative NAO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of Loire and Gironde River discharges over the sea surface temperature (SST) in the eastern Bay of Biscay (0.6º–36.6ºW, 44.2º–47.8ºW) was analyzed by means of two complementary databases (MODIS and OISST1/4). The area influenced by river plume showed a different SST when compared with the adjacent oceanic area for the months when the plume attains its highest extension (December, January, and February). Ocean was observed to warm at a rate of approximately 0.3ºC dec−1 while temperature at the area influenced by the rivers cooled at a rate of −0.15ºC dec−1 over the period 1982–2014. The mere presence of a freshwater layer is able to modulate the warming observed at adjacent ocean locations since the coastal area is isolated from the rest of the Bay. This nearshore strip is the only part of the Bay where changes in SST depend on North Atlantic Oscillation (NAO) but not on North Atlantic SST represented by the Atlantic Multidecadal Oscillation (AMO). These different cooling-warming trends are even more patent over the last years (2002–2014) under atmospheric favorable conditions for plume enhancement. River runoff increased at a rate on the order of 120 m3s−1dec−1 over that period and southwesterly winds, which favor the confinement of the plume, showed a positive and significant trend both in duration and intensity. Thus, the coastal strip has been observed to cool at a rate of −0.5°C dec−1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current climate model projections do not exhibit a large change in the intensity of extratropical cyclones. However, there are concerns that current models represent moist processes poorly, and this provides motivation for investigating observational evidence for how cyclones behave in warmer climates. In the North Atlantic in particular, recent decades provide a clear contrast between warm and cold climates due to Atlantic Multidecadal Variability. In this paper we investigate these periods as analogues which may provide a guide to future cyclone behavior. While temperature and moisture rise in recent warm periods as in the projections, differences in energetics and temperature gradients imply that these periods are only partial analogues. The main result from current reanalyses is that while increased cyclone-associated precipitation is seen in the recent warm periods, there is no robust evidence of an increase in cyclone intensity by other measures, such as maximum wind speed or vorticity. A set of low- and high-resolution model simulations are also studied, suggesting that changes in cyclone intensity may be different in higher-resolution reanalyses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society