907 resultados para asymptomatic parasite carriers
Resumo:
Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
This was a cross-sectional study which analyzed the prevalence and the clinical and immunological spectrum of canine Leishmania (L.) infantum chagasi infection in a cohort of 320 mongrel dogs living in an endemic area of American visceral leishmaniasis in the Amazonian Brazil by using, mainly, the indirect fluorescence antibody test (IFAT-IgG) and the delayed-type hypersensitivity (DTH), and the parasite research by the popliteal lymph node aspiration. The IFAT and DTH reactivity recognized three different immune response profiles: (1) IFAT((+))/DTH(-) (107 dogs), (2) IFAT((-))/DTH(+) (18 dogs), and (3) IFAT((+))/DTH(+) (13 dogs), providing an overall prevalence of infection of 43 % (138/320). Thus, the specific prevalence of IFAT ((+)) /DTH ((-)) 33.4 % (107/320) was higher than those of IFAT ((-)) /DTH ((+)) 5.6 % (18/320) and IFAT ((+)) /DTH ((+)) 4.0 % (13/320). Moreover, the frequency of these profiles among 138 infected dogs showed that the IFAT ((+)) /DTH ((-)) rate of 77.5 % (107/138) was also higher than those of 13.0 % (18/138) of IFAT ((-)) /DTH ((+)) and 9.5 % (13/138) of IFAT ((+)) /DTH ((+)) rates. The frequency of asymptomatic dogs (76 %-105) was higher than those of symptomatic (16.6 %-23) and oligosymptomatic ones (7.4 %-10). A total of 16 (11.6 %) L. (L.) i. chagasi isolates were obtained from infected dogs, all from the IFAT ((+)) /DTH ((-)) profile: 41 % (9/22) from symptomatic, 33.3 % (3/9) from oligosymptomatic, and 5.2 % (4/76) from asymptomatic dogs. These findings strongly suggested that despite the higher frequency of asymptomatic dogs (76 %-105), the majority (72.4 %-76) was characterized by the IFAT ((+)) /DTH ((-)) profile with a doubtful immunogenetic resistance against infection.
Resumo:
Mycoplasma conjunctivae is considered the major cause of infectious keratoconjunctivitis (IKC) in Alpine ibex (Capra i. ibex) and chamois (Rupicapra r. rupicapra). While it is known that domestic sheep can act as healthy carriers for M. conjunctivae, this question has not been addressed in wild ungulates so far. In this study, bacteriological investigations and field observations were performed to assess whether free-ranging Alpine ibex can be healthy carriers of M. conjunctivae. Among 136 ibex without clinical signs of IKC, M. conjunctivae was identified 26 times (19.1%) by TaqMan PCR. To assess the potential pathogenicity of M. conjunctivae strains isolated from asymptomatic eyes, strains from three healthy ibex and from 15 IKC-ibex and IKC-chamois were analysed genetically by DNA sequence analysis of the variable part of the lppS gene. No significant differences were observed between strains from asymptomatic and clinically affected animals, reflecting the assumption that healthy ibex may act as carriers for M. conjunctivae strains that may be pathogenic for other individuals. Our results further indicate that development of IKC is associated with M. conjunctivae load in the eyes. In addition, a questionnaire survey revealed that IKC is generally less common in ibex than chamois and that infection in wild ungulates is not necessarily linked to the presence of sheep. These data support the hypothesis that apparently healthy ibex may be important in the epizootiology of IKC and indicate that host predilection may play a role in IKC development.
Resumo:
The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.
Resumo:
Toxoplasma gondii is a coccidian parasite with a global distribution. The definitive host is the cat (and other felids). All warm-blooded animals can act as intermediate hosts, including humans. Sexual reproduction (gametogony) takes place in the final host and oocysts are released in the environment, where they then sporulate to become infective. In intermediate hosts the cycle is extra-intestinal and results in the formation of tachyzoites and bradyzoites. Tachyzoites represent the invasive and proliferative stage and on entering a cell it multiplies asexually by endodyogeny. Bradyzoites within tissue cysts are the latent form. T. gondii is a food-borne parasite causing toxoplasmosis, which can occur in both animals and humans. Infection in humans is asymptomatic in more than 80% of cases in Europe and North-America. In the remaining cases patients present fever, cervical lymphadenopathy and other non-specific clinical signs. Nevertheless, toxoplasmosis is life threatening if it occurs in immunocompromised subjects. The main organs involved are brain (toxoplasmic encephalitis), heart (myocarditis), lungs (pulmonary toxoplasmosis), eyes, pancreas and parasite can be isolated from these tissues. Another aspect is congenital toxoplasmosis that may occur in pregnant women and the severity of the consequences depends on the stage of pregnancy when maternal infection occurs. Acute toxoplasmosis in developing foetuses may result in blindness, deformation, mental retardation or even death. The European Food Safety Authority (EFSA), in recent reports on zoonoses, highlighted that an increasing numbers of animals resulted infected with T. gondii in EU (reported by the European Member States for pigs, sheep, goats, hunted wild boar and hunted deer, in 2011 and 2012). In addition, high prevalence values have been detected in cats, cattle and dogs, as well as several other animal species, indicating the wide distribution of the parasite among different animal and wildlife species. The main route of transmission is consumption of food and water contaminated with sporulated oocysts. However, infection through the ingestion of meat contaminated with tissue cysts is frequent. Finally, although less frequent, other food products contaminated with tachyzoites such as milk, may also pose a risk. The importance of this parasite as a risk for human health was recently highlighted by EFSA’s opinion on modernization of meat inspection, where Toxoplasma gondii was identified as a relevant hazard to be addressed in revised meat inspection systems for pigs, sheep, goats, farmed wild boar and farmed deer (Call for proposals -GP/EFSA/BIOHAZ/2013/01). The risk of infection is more highly associated to animals reared outside, also in free-range or organic farms, where biohazard measure are less strict than in large scale, industrial farms. Here, animals are kept under strict biosecurity measures, including barriers, which inhibit access by cats, thus making soil contamination by oocysts nearly impossible. A growing demand by the consumer for organic products, coming from free-range livestock, in respect of animal-welfare, and the desire for the best quality of derived products, have all led to an increase in the farming of free-range animals. The risk of Toxoplasma gondii infection increases when animals have access to environment and the absence of data in Italy, together with need for in depth study of both the prevalence and genotypes of Toxoplasma gondii present in our country were the main reasons for the development of this thesis project. A total of 152 animals have been analyzed, including 21 free-range pigs (Suino Nero race), 24 transhumant Cornigliese sheep, 77 free-range chickens and 21 wild animals. Serology (on meat juice) and identification of T. gondii DNA through PCR was performed on all samples, except for wild animals (no serology). An in-vitro test was also applied with the aim to find an alternative and valid method to bioassay, actually the gold standard. Meat samples were digested and seeded onto Vero cells, checked every day and a RT-PCR protocol was used to determine an eventual increase in the amount of DNA, demonstrating the viability of the parasite. Several samples were alos genetically characterized using a PCR-RFLP protocol to define the major genotypes diffused in the geographical area studied. Within the context of a project promoted by Istituto Zooprofilattico of Pavia and Brescia (Italy), experimentally infected pigs were also analyzed. One of the aims was to verify if the production process of cured “Prosciutto di Parma” is able to kill the parasite. Our contribution included the digestion and seeding of homogenates on Vero cells and applying the Elisa test on meat juice. This thesis project has highlighted widespread diffusion of T. gondii in the geographical area taken into account. Pigs, sheep, chickens and wild animals showed high prevalence of infection. The data obtained with serology were 95.2%, 70.8%, 36.4%, respectively, indicating the spread of the parasite among numerous animal species. For wild animals, the average value of parasite infection determined through PCR was 44.8%. Meat juice serology appears to be a very useful, rapid and sensitive method for screening carcasses at slaughterhouse and for marketing “Toxo-free” meat. The results obtained on fresh pork meat (derived from experimentally infected pigs) before (on serum) and after (on meat juice) slaughter showed a good concordance. The free-range farming put in evidence a marked risk for meat-producing animals and as a consequence also for the consumer. Genotyping revealed the diffusion of Type-II and in a lower percentage of Type-III. In pigs is predominant the Type-II profile, while in wildlife is more diffused a Type-III and mixed profiles (mainly Type-II/III). The mixed genotypes (Type-II/III) could be explained by the presence of mixed infections. Free-range farming and the contact with wildlife could facilitate the spread of the parasite and the generation of new and atypical strains, with unknown consequences on human health. The curing process employed in this study appears to produce hams that do not pose a serious concern to human health and therefore could be marketed and consumed without significant health risk. Little is known about the diffusion and genotypes of T. gondii in wild animals; further studies on the way in which new and mixed genotypes may be introduced into the domestic cycle should be very interesting, also with the use of NGS techniques, more rapid and sensitive than PCR-RFLP. Furthermore wildlife can become a valuable indicator of environmental contamination with T. gondii oocysts. Other future perspectives regarding pigs include the expansion of the number of free-range animals and farms and for Cornigliese sheep the evaluation of other food products as raw milk and cheeses. It should be interesting to proceed with the validation of an ELISA test for infection in chickens, using both serum and meat juice on a larger number of animals and the same should be done also for wildlife (at the moment no ELISA tests are available and MAT is the reference method for them). Results related to Parma ham do not suggest a concerning risk for consumers. However, further studies are needed to complete the risk assessment and the analysis of other products cured using technological processes other than those investigated in the present study. For example, it could be interesting to analyze products such as salami, produced with pig meat all over the Italian country, with very different recipes, also in domestic and rural contexts, characterized by a very short period of curing (1 to 6 months). Toxoplasma gondii is one of the most diffuse food-borne parasites globally. Public health safety, improved animal production and protection of endangered livestock species are all important goals of research into reliable diagnostic tools for this infection. Future studies into the epidemiology, parasite survival and genotypes of T. gondii in meat producing animals should continue to be a research priority.
Resumo:
Cover title.
Resumo:
-
Resumo:
The objective was to understand the influence of the surface roughness of lactose carriers on the adhesion and dispersion of salmeterol xinafoate (SX) from interactive mixtures. The surface roughness of lactose carriers was determined by confocal microscopy. Particle images and adhesion forces between SX and lactose particles were determined by Atomic Force Microscopy. The dispersion of SX (2.5%) from interactive mixtures with lactose was determined using a twin-stage impinger (TSI) with a Rotahaler® at an airflow rate of 60L/min. SX was analysed using a validated HPLC assay. The RMS Rq of lactose carriers ranged from 0.93-2.84μm, the Fine Particle Fraction (FPF) of SX ranged between 4 and 24 percent and average adhesion force between a SX and lactose particles ranged between 49 and 134 nN. No direct correlation was observed between the RMS Rq of lactose carriers and either the FPF of SX for the interactive mixtures or the adhesion force of a SX on the lactose particles; however, the presence of fine lactose associated with the carrier surface increased the FPF of SX. Dispersion through direct SX detachment from the carrier surface was not consistent with the poor correlations described and was more likely to occur through complex particulate interactions involving fine lactose.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil. At the same time, the European airline industry entered a period of substantive deregulation. This period witnessed opportunities for low-cost carriers to become more competitive in the market as a result of these combined events. To help assess airline performance in the aftermath of these events, this paper provides new evidence of technical efficiency for 42 national and international airlines in 2006 using the data envelopment analysis (DEA) bootstrap approach first proposed by Simar and Wilson (J Econ, 136:31-64, 2007). In the first stage, technical efficiency scores are estimated using a bootstrap DEA model. In the second stage, a truncated regression is employed to quantify the economic drivers underlying measured technical efficiency. The results highlight the key role played by non-discretionary inputs in measures of airline technical efficiency.
Resumo:
This study reports the factors controlling aerosolization of salbutamol sulfate (SS) from mixtures with polycaprolactone (PCL) microspheres fabricated using an emulsion technique with polyvinyl alcohol (PVA) as stabilizer. The fine particle fraction (FPF) of SS from PCL measured by a twin-stage impinger was unexpectedly found to be zero, although scanning electron microscopy showed that the drug coated the entire microsphere. Precoating the microspheres with magnesium stearate (MgSt) excipient solutions (1%–2%) significantly increased (p < 0.05, n = 5) the FPF of SS (11.4%–15.4%), whereas precoating with leucine had a similar effect (FPF = 11.3 ± 1.1%), but was independent of the solution concentration. The force of adhesion (by atomic force microscopy) between the PCL microspheres and SS was reduced from 301.4 ± 21.7 nN to 110.9 ± 30.5 nN and 121.8 ± 24.6 nN, (p < 0.05, n = 5) for 1% and 2% MgSt solutions, respectively, and to 148.1 ± 21.0 nN when coated with leucine. The presence of PVA on the PCL microspheres (detected by X-ray photoelectron spectroscopy) affected the detachment of SS due to strong adhesion between the two, presumably due to capillary forces acting between them. Precoating the microspheres with excipients increased the FPF significantly by reducing the drug–carrier adhesion. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:733–745, 2012
Resumo:
Core(polyvinyl neodecanoate-ethylene glycol dimethacrylate)-shell(polyvinyl alcohol) (core (P(VND-EGDMA))-shell(PVA)) microspheres were developed by seeded polymerization with the use of conventional free radical and RAFT/MADIX mediated polymerization. Poly(vinyl pivalate) PVPi was grafted onto microspheres prepared via suspension polymerization of vinylneodecanoate and ethylene glycol dimethacrylate. The amount of grafted polymer was found to be independent from the technique used with conventional free radical polymerization and MADIX polymerization resulting into similar shell thicknesses. Both systems—grafting via free radical polymerization or the MADIX process—were found to follow slightly different kinetics. While the free radical polymerization resulted in a weight gain linear with the monomer consumption in solution the growth in the MADIX controlled system experienced a delay. The core-shell microspheres were obtained by hydrolysis of the poly(vinyl pivalate) surface grafted brushes to form poly(vinyl alcohol). During hydrolysis the microspheres lost a significant amount of weight, consistent with the hydrolysis of 40–70% of all VPi units. Drug loading was found to be independent of the shell layer thickness, suggesting that the drug loading is governed by the amount of bulk material. The shell layer does not appear to represent an obstacle to the drug ingress. Cell testing using colorectal cancer cell lines HT 29 confirm the biocompatibility of the empty microspheres whereas the clofazimine loaded particles lead to 50% cell death, confirming the release of the drug.