970 resultados para arterial carbon dioxide tension


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon formation on Ni/gamma-Al2O3 catalysts and its kinetics during methane reforming with carbon dioxide was studied in the temperature range of 500-700 degrees C using a thermogravimetric analysis technique. The activation energies of methane cracking, carbon gasification in CO2, as well as carbon deposition in CO2-CH4 reforming were obtained. The results show that the activation energy for carbon gasification is larger than that of carbon formation in methane cracking and that the activation energy of coking in CO2-CH4 reforming is also larger than that of methane decomposition to carbon. The dependencies of coking rate on partial pressures of CH4 and CO2 indicate that methane decomposition is the main route for carbon deposition. A mechanism and kinetic model for carbon deposition is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni catalysts supported on gamma-Al2O3, CeO2 and CeO2-A1(2)O(3) systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2-Al2O3 catalysts showed much better catalytic performance than either CeO2- or gamma-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal-support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/gamma-Al2O3 catalysts for this reaction. A weight loading of 1-5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Ni catalysts supported on flyash treated by various chemical methods was tested for carbon dioxide reforming of methane. Ni catalyst on the flyash treated with CaO (Ni/Ash-CaO) shows high conversion and stability, being close to those of the well-reported Ni/Al2O3 and Ni/SiO2 catalysts with conversions approaching thermodynamic equilibrium levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide (CO(2)) has been used in the food industry as an antimicrobial agent. This study aimed to investigate whether CO(2) pneumoperitoneum might act similarly as an antimicrobial agent in the infected peritoneal cavity. Peritonitis was induced in 58 rats by intraabdominal injection of an Escherichia coli inoculum (6 x 105 colony-forming units [CFU]/ml). Control rats were injected with saline solution. The rats were randomly divided into four groups: rat control (RC, n = 15), bacterial inoculation control (BIC, n = 10), bacterial inoculation and laparotomy (BIL, n = 17), and bacterial inoculation and CO(2) pneumoperitoneum (BIP, n = 16). The survival rates and histopathologic changes in the abdominal wall muscles, spleen, liver, intestines, and omentum were evaluated, and the samples were classified as ""preserved"" or ""inflamed"" (acute inflammation or tissue regeneration). The survival rates for the four groups were as follows: RC (100%), BIP (75%), BIL (53%), and BIC (30%). With regard to survival rates, statistically significant differences were observed between the following groups: RC and BIC (p = 0.0009), RC and BIL (p = 0.0045), BIP and BIC (p = 0.0332), and RC and BIP (p = 0.0470). No significant differences regarding survival rates were observed between the BIL and BIC groups or between the BIP and BIL groups. With regard to the number of inflamed samples per group, a statistically significant difference was observed between the BIC and RC groups and the BIL and RC groups (p = 0.05). Carbon dioxide pneumoperitoneum has a protective effect against bacterial peritonitis induced in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubility of ethyl propionate, ethyl butyrate, and ethyl isovalerate in supercritical carbon dioxide was measured at temperature ranging from 308.15 to 333.15 K and pressure ranging from 85 to 195 bar. At the same temperature, the solubility of these compounds increases with pressure. The crossover pressure region was also observed in this study. The experimental data were correlated by the semi-empirical Chrastil equation and Peng-Robinson equation of state (EOS) using several mixing rules. The Peng-Robinson EOS gives better solubility prediction than the empirical Chrastil equation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solubilities of red 153, (3-[[4-[[5,6(or 6,7)-dichloro-2-benzothiazolyl]azo]phenyl]ethylamino]propanenitrile), an azo compound, and disperse blue1 (1,4,5,8-tetraaminoantraquinone) in supercritical carbon dioxide (SC CO(2)) were measured at T = (333.2 to 393.2) K over the pressure range (12.0 to 40.0) MPa by a flow type apparatus. The solubility of red 153 (0.985. 10(-6) to 37.2. 10(-6)) in the overall region of measurements is found to be significantly higher than that of disperse blue 1 (1.12.10(-7) to 4.89.10(-7)). The solubility behavior of disperse red 153 follows the general solubility trend displayed by disperse dyes with a crossover pressure at about 20 MPa. On the other hand, blue 1, which is a disperse anthraquinone dye, exhibits unexpected behavior not recorded previously there is no crossover pressure at the temperature and pressure ranges studied, and the dye's solubility at T = 333.2 K practically does not increase with pressure. To the best of our knowledge, there are no previous measurements of blue 1 solubility in SC CO(2) reported in the literature. The experimental data were correlated by using the Soave Redlich Kwong equation of state (EoS) with the one-fluid van der Waals mixing rule, and an acceptable correlation of the solubility data for both dyes was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A discussion of the most interesting results obtained in our laboratories, during the supercritical CO(2) extraction of bioactive compounds from microalgae and volatile oils from aromatic plants, was carried out. Concerning the microalgae, the studies on Botryococcus braunii and Chlorella vulgaris were selected. Hydrocarbons from the first microalgae, which are mainly linear alkadienes (C(23)-C(31)) with an odd number of carbon atoms, were selectively extracted at 313 K increasing the pressure up to 30.0 MPa. These hydrocarbons are easily extracted at this pressure, since they are located outside the cellular walls. The extraction of carotenoids, mainly canthaxanthin and astaxanthin, from C. vulgaris is more difficult. The extraction yield of these components at 313 K and 35.0 MPa increased with the degree of crushing of the microalga, since they are not extracellular. On the other hand, for the extraction of volatile oils from aromatic plants, studies on Mentha pulegium and Satureja montana L were chosen. For the first aromatic plant, the composition of the volatile and essential oils was similar, the main components being the pulegone and menthone. However, this volatile oil contained small amounts of waxes, which content decreased with decreasing particle size of the plant matrix. For S. montana L it was also observed that both oils have a similar composition, the main components being carvacrol and thymol. The main difference is the relative amount of thymoquinone, which content can be 15 times higher in volatile oil. This oxygenated monoterpene has important biological activities. Moreover, experimental studies on anticholinesterase activity of supercritical extracts of S. montana were also carried out. The supercritical nonvolatile fraction, which presented the highest content of the protocatechuic, vanilic, chlorogenic and (+)-catechin acids, is the most promising inhibitor of the enzyme butyrylcholinesterase. In contrast, the Soxhlet acetone extract did not affect the activity of this enzyme at the concentrations tested. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.