349 resultados para arousal
Resumo:
To test the hypothesis that those who provide care for a spouse diagnosed with Alzheimer's disease would have increased prevalence of carotid artery plaque compared with noncaregiving controls and that prolonged sympathoadrenal arousal to acute stress would relate to this difference. Providing care for a spouse with Alzheimer's disease has been associated with an increased risk of coronary heart disease, potentially due to the impact of caregiving stress on the atherosclerotic disease process.
Resumo:
White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.
Resumo:
Reconciliation is the occurrence of friendly behaviour between opponents shortly after an aggressive conflict. In primate groups, reconciliation reduces aggression and post-conflict arousal. Aggression within a group can also increase arousal of bystanders (e.g. increase bystanders’ rates of self-directed behaviour). Since reconciliation reduces aggression between opponents, we tested whether it also reduces self-directed behaviour in bystanders. Following aggression in a captive group of hamadryas baboons, one observer conducted a focal sample on one of the combatants to document reconciliation and a second observer simultaneously conducted a focal sample on a randomly selected bystander. Matched control observations were then collected on the same individuals in a nonaggressive context to obtain baseline levels of behaviour. The self-directed behaviour of bystanders was elevated after witnessing a fight compared to baseline levels. If combatants reconciled aggression, bystander rates of self-directed behaviour significantly decreased. If combatants did not reconcile aggression, bystander rates of self-directed behaviour remained at elevated levels, significantly higher than after reconciliation. If combatants affiliated with partners other than their original opponent, bystander rates of self-directed behaviour did not decrease. The rate of bystander self-directed behaviour after a combatant affiliated with its opponent was significantly lower than the rate after a combatant affiliated with other animals. Witnessing aggression increased arousal in bystanders, and reconciliation between the combatants was accompanied by reduced bystander arousal. The reduction was specific to contexts in which former opponents interacted. We suggest that bystanders recognized the functional significance of this conflict resolution mechanism when it occurred in their group.
Resumo:
Reconciliation is the occurrence of friendly behaviour between opponents shortly after an aggressive conflict. In primate groups, reconciliation reduces aggression and postconflict arousal. Aggression within a group can also increase arousal of bystanders (e.g. increase bystanders' rates of self-directed behaviour). Since reconciliation reduces aggression between opponents, we tested whether it also reduces self-directed behaviour in bystanders. Following aggression in a captive group of hamadryas baboons, one observer conducted a focal sample on one of the combatants to document reconciliation and a second observer simultaneously conducted a focal sample on a randomly selected bystander. Matched control observations were then collected on the same individuals in a nonaggressive context to obtain baseline levels of behaviour. The self-directed behaviour of bystanders was elevated after witnessing a fight compared to baseline levels. If combatants reconciled aggression, bystander rates of self-directed behaviour significantly decreased. If combatants did not reconcile aggression, bystander rates of self-directed behaviour remained at elevated levels, significantly higher than after reconciliation. If combatants affiliated with partners other than their original opponent, bystander rates of self-directed behaviour did not decrease. The rate of bystander self-directed behaviour after a combatant affiliated with its opponent was significantly lower than the rate after a combatant affiliated with other animals. Witnessing aggression increased arousal in bystanders, and reconciliation between the combatants was accompanied by reduced bystander arousal. The reduction was specific to contexts in which former opponents interacted. We suggest that bystanders recognized the functional significance of this conflict-resolution mechanism when it occurred in their group. (c) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Music is capable of inducing emotional arousal. While previous studies used brief musical excerpts to induce one specific emotion, the current study aimed to identify the physiological correlates of continuous changes in subjective emotional states while listening to a complete music piece. A total of 19 participants listened to the first movement of Ludwig van Beethoven's 5th symphony (duration: ~7.4 min), during which a continuous 76-channel EEG was recorded. In a second session, the subjects evaluated their emotional arousal during the listening. A fast fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. Subjective arousal ratings had good inter-individual correlations. Covariance maps showed a right-frontal suppression of lower alpha-band activity during high arousal. The results indicate that music is a powerful arousal-modulating stimulus. The temporal dynamics of the piece are well suited for sequential analysis, and could be necessary in helping unfold the full emotional power of music.
Resumo:
The present study investigates the relation of perceived arousal (continuous self-rating), autonomic nervous system activity (heart rate, heart rate variability) and musical characteristics (sound intensity, musical rhythm) upon listening to a complex musical piece. Twenty amateur musicians listened to two performances of Chopin's "Tristesse" with different rhythmic shapes. Besides conventional statistical methods for analyzing psychophysiological reactions (heart rate, respiration rate) and musical variables, semblance analysis was used. Perceived arousal correlated strongly with sound intensity; heart rate showed only a partial response to changes in sound intensity. Larger changes in heart rate were caused by the version with more rhythmic tension. The low-/high-frequency ratio of heart rate variability increased-whereas the high frequency component decreased-during music listening. We conclude that autonomic nervous system activity can be modulated not only by sound intensity but also by the interpreter's use of rhythmic tension. Semblance analysis enables us to track the subtle correlations between musical and physiological variables.
Resumo:
The objective of this study is to determine the impact of expectation associated with placebo and caffeine ingestion. We used a three-armed, randomized, double-blind design. Two three-armed experiments varying instruction (true, false, control) investigated the role of expectations of changes in arousal (blood pressure, heart rate), subjective well-being, and reaction time (RT). In Experiment 1 (N = 45), decaffeinated coffee was administered, and expectations were produced in one group by making them believe they had ingested caffeinated coffee. In Experiment 2 (N = 45), caffeinated orange juice was given in both experimental groups, but only one was informed about the true content. In Experiment 1, a significant effect for subjective alertness was found in the placebo treatment compared to the control group. However, for RT and well-being no significant effects were found. In Experiment 2, no significant expectancy effects were found. Caffeine produced large effects for blood pressure in both treatments compared to the control group, but the effects were larger for the false information group. For subjective well-being (alertness, calmness), considerable but nonsignificant changes were found for correctly informed participants, indicating possible additivity of pharmacologic effect and expectations. The results tentatively indicate that placebo and expectancy effects primarily show through introspection.
Resumo:
OBJECTIVES: Spousal caregivers of Alzheimer's disease patients are at increased risk for cardiovascular disease, possibly via sympathetic response to stressors and subsequent catecholamine surge. Personal mastery (i.e., belief that one can manage life's obstacles) may decrease psychological and physiological response to stressors. This study examines the relationship between mastery and sympathetic arousal in elderly caregivers, as measured by norepinephrine (NE) reactivity to an acute psychological stressor. DESIGN: Cross-sectional. SETTING: Data were collected by a research nurse in each caregiver's home. PARTICIPANTS: Sixty-nine elderly spousal Alzheimer caregivers (mean age: 72.8 years) who were not taking beta-blocking medication. INTERVENTION: After assessment for mastery and objective caregiving stressors, caregivers underwent an experimental speech task designed to induce sympathetic arousal. MEASUREMENTS: Mastery was assessed using Pearlin's Personal Mastery scale and Alzheimer patient functioning was assessed using the Clinical Dementia Rating Scale, Problem Behaviors Scale, and Activities of Daily Living Scale. Plasma NE assays were conducted using pre- and postspeech blood draws. RESULTS: Multiple regression analyses revealed that mastery was significantly and negatively associated with NE reactivity (B = -9.86, t (61) = -2.03, p = 0.046) independent of factors theoretically and empirically linked to NE reactivity. CONCLUSIONS: Caregivers with higher mastery had less NE reactivity to the stressor task. Mastery may exert a protective influence that mitigates the physiological effects of acute stress, and may be an important target for psychosocial interventions in order to reduce sympathetic arousal and cardiovascular stress among dementia caregivers.
Resumo:
Sensitization is a simple form of learning which refers to an enhancement of a behavioral response resulting from an exposure to a novel stimulus. While sensitization is found throughout the animal world, little is known regarding the underlying neural mechanisms. By taking advantage of the simple nervous system of the marine mollusc Aplysia, I have begun to examine the cellular and molecular mechanisms underlying this simple form of learning. In an attempt to determine the generality of the mechanisms of neuromodulation underlying sensitization, I have investigated and compared the modulation of neurons involved in two defensive behaviors in Aplysia, the defensive inking response and defensive tail withdrawal.^ The motor neurons that produce the defensive release of ink receive a slow decreased conductance excitatory postsynaptic potential (EPSP) in response to sensitizing stimuli. Using electrophysiological techniques, it was found that serotonin (5-HT) mimicked the physiologically produced slow EPSP. 5-HT produced its response through a reduction in a voltage-independent conductance to K('+). The 5-HT sensitive K('+) conductance of the ink motor neurons was separate from the fast K('+), delayed K('+), and Ca('2+)-activated K('+) conductances found in these and other molluscan neurons. 5-HT was shown to produce a decrease in K('+) conductance in the ink motor neurons through an elevation of cellular cAMP.^ The mechanosensory neurons that participate in the defensive tail withdrawal response are also modulated by sensitizing stimuli through the action of 5-HT. Using electrophysiological techniques, it was found that 5-HT modulated the tail sensory neurons through a reduction in a voltage-dependent conductance to K('+). The serotonin-sensitive K('+) conductance was found to be largely a Ca('2+)-activated K('+) conductance. Much like the ink motor neurons, 5-HT produced its modulation through an elevation of cellular cAMP. While the actual K('+) conductance modulated by 5-HT in these two classes of neurons differs, the following generalizations can be made: (1) the effects of sensitizing stimuli are mimicked by 5-HT, (2) 5-HT produces its effect through an elevation of cellular cAMP, and (3) the conductance to K('+) is modulated by 5-HT. ^
Resumo:
To survive in a rapidly changing environment, animals must sense their external world and internal physiological state and properly regulate levels of arousal. Levels of arousal that are abnormally high may result in inefficient use of internal energy stores and unfocused attention to salient environmental stimuli. Alternatively, levels of arousal that are abnormally low may result in the inability to properly seek food, water, sexual partners, and other factors necessary for life. In the brain, neurons that express hypocretin neuropeptides may be uniquely posed to sense the external and internal state of the animal and tune arousal state according to behavioral needs. In recent years, we have applied temporally precise optogenetic techniques to study the role of these neurons and their downstream connections in regulating arousal. In particular, we have found that noradrenergic neurons in the brainstem locus coeruleus (LC) are particularly important for mediating the effects of hypocretin neurons on arousal. Here, we discuss our recent results and consider the implications of the anatomical connectivity of these neurons in regulating the arousal state of an organism across various states of sleep and wakefulness.
Resumo:
The temporal dynamics of the neural activity that implements the dimensions valence and arousal during processing of emotional stimuli were studied in two multi-channel ERP experiments that used visually presented emotional words (experiment 1) and emotional pictures (experiment 2) as stimulus material. Thirty-two healthy subjects participated (mean age 26.8 +/- 6.4 years, 24 women). The stimuli in both experiments were selected on the basis of verbal reports in such a way that we were able to map the temporal dynamics of one dimension while controlling for the other one. Words (pictures) were centrally presented for 450 (600) ms with interstimulus intervals of 1,550 (1,400) ms. ERP microstate analysis of the entire epochs of stimulus presentations parsed the data into sequential steps of information processing. The results revealed that in several microstates of both experiments, processing of pleasant and unpleasant valence (experiment 1, microstate #3: 118-162 ms, #6: 218-238 ms, #7: 238-266 ms, #8: 266-294 ms; experiment 2, microstate #5: 142-178 ms, #6: 178-226 ms, #7: 226-246 ms, #9: 262-302 ms, #10: 302-330 ms) as well as of low and high arousal (experiment 1, microstate #8: 266-294 ms, #9: 294-346 ms; experiment 2, microstate #10: 302-330 ms, #15: 562-600 ms) involved different neural assemblies. The results revealed also that in both experiments, information about valence was extracted before information about arousal. The last microstate of valence extraction was identical with the first microstate of arousal extraction.
Resumo:
During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (<4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from subcortical circuits remains unclear. We found that GABA neurons from the lateral hypothalamus (LHGABA) exert a strong inhibitory control over TRN GABA neurons (TRNGABA). We found that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM, sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LHGABA-TRNGABA transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.