934 resultados para arm-trunk coordination
Resumo:
Three-dimensional kinematic analysis of line of gaze, arm and ball was used to describe the visual and motor behaviour of male adolescents diagnosed with attention deficit hyperactivity disorder (ADHD). The ADHD participants were tested when both on (ADHD-On) and off (ADHD-Off) their medication and compared to age-matched normal controls in a modified table tennis task that required tracking the ball and hitting to cued right and left targets. Long-duration information was provided by a pre-cue, in which the target was illuminated approximately 2 s before the serve, and short-duration information by an early-cue illuminated about 350 ms after the serve, leaving -500 ms to select the target and perform the action. The ADHD groups differed significantly from the control group in both the pre-cue and early-cue conditions in being less accurate, in having a later onset and duration of pursuit tracking, and a higher frequency of gaze on and off the ball. The use of medication significantly reduced the gaze frequency of the ADHD participants, but surprisingly this did not lead to an increase in pursuit tracking, suggesting a barrier was reached beyond which ball flight information could not be processed. The control and ADHD groups did not differ in arm movement onset, duration and velocity in the short-duration early-cue condition; in the long-duration pre-cue condition, however, the ADHD group's movement time onset and arm velocity differed significantly from controls. The results show that the ADHD groups were able to process short-duration information without experiencing adverse effects on their motor behaviour; however, long-duration information contributed to irregular movement control.
Resumo:
The trapezius (pars superior) and levator scapulae mm were studied in the arm movements of circumduction and pendular oscillation in 30 adult volunteers of both sexes. A two-channel TECA TE 4 electromyograph and single coaxial needle electrodes were used. It was found out that as arm conduction, both muscles show an activity that gradually increases and decreases the intensity at the elevation and lowering phases respectively. It was also noticed that between two consecutive circumductions a 'silent period' in the activity of the above mentioned muscles occurs. In pendular oscillation these muscles show electrical activity both in the forward and backward moving, and both muscles show a 'silent period' when the arm passes by the trunk. It was not observed in these movements any significant difference in activity of these muscles regarding sex.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
[EN] To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.
Resumo:
The internal mechanism of cilia is among the most ancient biological motors on an evolutionary scale. It produces beat patterns that consist of two phases: during the effective stroke, the cilium moves approximately as a straight rod, and during the recovery stroke, it rolls close to the surface in a tangential motion. It is commonly agreed that these two phases are designed for efficient functioning: the effective stroke encounters strong viscous resistance and generates thrust, whereas the recovery stroke returns the cilium to starting position while avoiding viscous resistance. Metachronal coordination between cilia, which occurs when many of them beat close to each other, is believed to be an autonomous result of the hydrodynamical interactions in the system. Qualitatively, metachronism is perceived as a way for reducing the energy expenditure required for beating. This paper presents a quantitative study of the energy expenditure of beating cilia, and of the energetic significance of metachronism. We develop a method for computing the work done by model cilia that beat in a viscous fluid. We demonstrate that for a single cilium, beating in water, the mechanical work done during the effective stroke is approximately five times the amount of work done during the recovery stroke. Investigation of multicilia configurations shows that having neighboring cilia beat metachronally is energetically advantageous and perhaps even crucial for multiciliary functioning. Finally, the model is used to approximate the number of dynein arm attachments that are likely to occur during the effective and recovery strokes of a beat cycle, predicting that almost all of the available dynein arms should participate in generating the motion.
Resumo:
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Resumo:
Many studies have identified changes in trunk muscle recruitment in clinical low back pain (LBP). However, due to the heterogeneity of the LBP population these changes have been variable and it has been impossible to identify a cause-effect relationship. Several studies have identified a consistent change in the feed-forward postural response of transversus abdominis (TrA), the deepest abdominal muscle, in association with arm movements in chronic LBP. This study aimed to determine whether the feedforward recruitment of the trunk muscles in a postural task could be altered by acute experimentally induced LBP. Electromyographic (EMG) recordings of the abdominal and paraspinal muscles were made during arm movements in a control trial, following the injection of isotonic (non-painful) and hypertonic (painful) saline into the longissimus muscle at L4, and during a 1-h follow-up. Movements included rapid arm flexion in response to a light and repetitive arm flexion-extension. Temporal and spatial EMG parameters were measured. The onset and amplitude of EMG of most muscles was changed in a variable manner during the period of experimentally induced pain. However, across movement trials and subjects the activation of TrA was consistently reduced in amplitude or delayed. Analyses in the time and frequency domain were used to confirm these findings. The results suggest that acute experimentally induced pain may affect feedforward postural activity of the trunk muscles. Although the response was variable, pain produced differential changes in the motor control of the trunk muscles, with consistent impairment of TrA activity.
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.
Resumo:
Background. Older adults typically exhibit dramatic reductions in the rate of force development and deficits in the execution of rapid coordinated movements. The purpose of the current study was to investigate the association between the reduced rate of force development exhibited by older adults and the ability to coordinate groups of muscles. Methods. The performance of a visually guided aiming task that required the generation of isometric torque about the elbow joint was compared in 10 young adults (age range, 19 to 29 years) and 10 older adults (age range, 65 to 80 years). Participants were required to exert isometric torque in flexion, extension, pronation, or supination, or in combinations of these directions, to reach a target in minimum time. Surface electromyograms were obtained from the biceps brachii, triceps brachii, brachioradialis, and flexor carpi radialis. Results. Older participants exhibited slower target acquisition times compared with young participants (p < .05), with the extent of the differences between the groups varying markedly between target locations. Conclusions. The impairment in performance, although partially attributable to a general decline in the ability to produce force rapidly, was also affected by the requirements for muscular coordination. At the neuromuscular level, differences between the young and the elderly were expressed most prominently in the bifunctional muscle biceps brachii and in certain temporal aspects of muscular coordination.
Resumo:
Background: Voluntary limb movements are associated with involuntary and automatic postural adjustments of the trunk muscles. These postural adjustments occur prior to movement and prevent unwanted perturbation of the trunk. In low back pain, postural adjustments of the trunk muscles are altered such that the deep trunk muscles are consistently delayed and the superficial trunk muscles are sometimes augmented. This alteration of postural adjustments may reflect disruption of normal postural control imparted by reduced central nervous system resources available during pain, so-called pain interference, or reflect adoption of an alternate postural adjustment strategy. Methods: We aimed to clarify this by recording electromyographic activity of the upper (obliquus extemus) and lower (transversus abdominis/obliquus internus) abdominal muscles during voluntary arm movements that were coupled with painful cutaneous stimulation at the low back. If the effect of pain on postural adjustments is caused by pain interference, it should be greatest at the onset of the stimulus, should habituate with repeated exposure, and be absent immediately when the threat of pain is removed. Sixteen patients performed 30 forward movements of the right arm in response to a visual cue (control). Seventy trials were then conducted in which arm movement was coupled with pain (pain trials) and then a further 70 trials were conducted without the pain stimulus (no pain trials). Results: There was a gradual and increasing delay of transversus abdominis/obliquus internus electromyograph and augmentation of obliquus externus during the pain trials, both of which gradually returned to control values during the no pain trials. Conclusion: The results suggest that altered postural adjustments of the trunk muscles during pain are not caused by pain interference but are likely to reflect development and adoption of an alternate postural adjustment strategy, which may serve to limit the amplitude and velocity of trunk excursion caused by arm movement.
Resumo:
The present study investigates the coordination between two people oscillating handheld pendulums, with a special emphasis on the influence of the mechanical properties of the effector systems involved. The first part of the study is an experiment in which eight pairs of participants are asked to coordinate the oscillation of their pendulum with the other participant's in an in-phase or antiphase fashion. Two types of pendulums, A and B, having different resonance frequencies (Freq A=0.98 Hz and Freq B=0.64 Hz), were used in different experimental combinations. Results confirm that the preferred frequencies produced by participants while manipulating each pendulum individually were close to the resonance frequencies of the pendulums. In their attempt to synchronize with one another, participants met at common frequencies that were influenced by the mechanical properties of the two pendulums involved. In agreement with previous studies, both the variability of the behavior and the shift in the intended relative phase were found to depend on the task-effector asymmetry, i.e., the difference between the mechanical properties of the effector systems involved. In the second part of the study, we propose a model to account for these results. The model consists of two cross-coupled neuro-mechanical units, each composed of a neural oscillator driving a wrist-pendulum system. Taken individually, each unit reproduced the natural tendency of the participants to freely oscillate a pendulum close to its resonance frequency. When cross-coupled through the vision of the pendulum of the other unit, the two units entrain each other and meet at a common frequency influenced by the mechanical properties of the two pendulums involved. The ability of the proposed model to address the other effects observed as a function of the different conditions of the pendulum and intended mode of coordination is discussed.
Resumo:
The aim of this study was to determine whether postural activity of the pelvic floor (PF) and abdominal muscles differs between continent and incontinent women during rapid arm movements that present a postural challenge to the trunk. A further aim was to study the effect of bladder filling. Electromyographic activity (EMG) of the PF, abdominal, erector spinae (ES), and deltoid muscles was recorded with surface electrodes. During rapid shoulder flexion and extension, PF EMG increased before that of the deltoid in continent women, but after the deltoid in incontinent women (p= 0.002). In many incontinent women, PF EMG decreased before the postural activation. Although delayed, postural PF EMG amplitude was greater in women with incontinence ( p= 0.010). In both groups, PF EMG decreased and abdominal and ES EMG increased when the bladder was moderately full. These findings would be expected to have negative consequences for continence and lumbopelvic stability in women with incontinence.
Resumo:
The world's oceans are slowly becoming more acidic. In the last 150 yr, the pH of the oceans has dropped by ~0.1 units, which is equivalent to a 25% increase in acidity. Modelling predicts the pH of the oceans to fall by 0.2 to 0.4 units by the year 2100. These changes will have significant effects on marine organisms, especially those with calcareous skeletons such as echinoderms. Little is known about the possible long-term impact of predicted pH changes on marine invertebrate larval development. Here we predict the consequences of increased CO2 (corresponding to pH drops of 0.2 and 0.4 units) on the larval development of the brittlestar Ophiothrix fragilis, which is a keystone species occurring in high densities and stable populations throughout the shelf seas of northwestern Europe (eastern Atlantic). Acidification by 0.2 units induced 100% larval mortality within 8 d while control larvae showed 70% survival over the same period. Exposure to low pH also resulted in a temporal decrease in larval size as well as abnormal development and skeletogenesis (abnormalities, asymmetry, altered skeletal proportions). If oceans continue to acidify as expected, ecosystems of the Atlantic dominated by this keystone species will be seriously threatened with major changes in many key benthic and pelagic ecosystems. Thus, it may be useful to monitor O. fragilis populations and initiate conservation if needed.