904 resultados para arachidonic acid metabolism inhibitors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats.Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0±10.4%) andheart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influencedbymicrobial activitiesormodulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars by intestinal bacteria. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example from lactate and acetate. SCFA play a role in regulating transit of digesta through the intestine, and butyrate formation is thought to be beneficial to health because butyrate decreases the risk of colon cancer. Major butyrate-producing species are among the most abundant present in the colon, including Roseburia and Faecalibacterium spp. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinovorans. Enhancement of intestinal CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the potential benefits to human health there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 conjugated linoleic acid (CLA) in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg BW) fitted with rumen and duodenal cannulae were used in a 4 x 4 Latin square experiment with 21 d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 polyunsaturated fatty acids (PUFA) in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg DM of FO, LO or a mixture (1:1, w/w) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g DM/kg BW0.75/d. Oils had no effect (P = 0.52) on DM intake. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, while FO shifted rumen fermentation towards propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of ∆9,11, ∆11,13, and ∆13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in higher (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and lowered (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum responses to LFO were intermediate of FO and LO. However, LFO resulted in higher (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was higher (P < 0.001) for LO and LFO than FO, while biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally lower (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg DM altered the biohydrogenation of unsaturated fatty acids in the rumen causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of review Evidence suggests that short-chain fatty acids (SCFAs) derived from microbial metabolism in the gut play a central role in host homeostasis. The present review describes the current understanding and physiological implications of SCFAs derived from microbial metabolism of nondigestible carbohydrates. Recent findings Recent studies indicate a role for SCFAs, in particular propionate and butyrate, in the metabolic and inflammatory disorders such as obesity, diabetes and inflammatory bowel diseases, through the activation of specific G-protein-coupled receptors and modification of transcription factors. Established prebiotics, such as fructooligosaccharides and galactooligosaccharides, which support the growth of Bifidobacteria, mainly mediate acetate production. Thus, recent identification of prebiotics which are able to stimulate the production of propionate and butyrate by benign saccharolytic populations in the colon is of interest. Summary Manipulation of saccharolytic fermentation by prebiotic substrates is beginning to provide information on structure–function relationships relating to the production of SCFAs, which have multiple roles in host homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated using published data from cows and sheep fed a range of diets or infused with various doses of La. The model performed well in simulating peak rumen La concentrations (coefficient of determination = 0.96; root mean square prediction error = 16.96% of observed mean), although frequency of sampling for the published data prevented a comprehensive comparison of prediction of time to peak La accumulation. The model showed a tendency for increased La accumulation following feeding of diets rich in nonstructural carbohydrates, although less-soluble starch sources such as corn tended to limit rumen La concentration. Simulated La absorption from the rumen remained low throughout the feeding cycle. The competition between bacteria and protozoa for rumen La suggests a variable contribution of protozoa to total La utilization. However, the model was unable to simulate the effects of defaunation on rumen La metabolism, indicating a need for a more detailed description of protozoal metabolism. The model could form the basis of a feed evaluation system with regard to rumen La metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent deep mycosis in Latin America. Production of eicosanoids during fungal infections plays a critical role on fungal biology as well as on host immune response modulation. The purpose of our study was to assess whether P. brasiliensis strains with different degree of virulence (Pb18, Pb265, Bt79, Pb192) produce prostaglandin E-x (PGE(x)). Moreover, we asked if P. brasiliensis could use exogenous sources of arachidonic acid (AA), as well as metabolic pathways dependent on cyclooxygenase (COX) enzyme, as reported for mammalian cells. A possible association between this prostanoid and fungus viability was also assessed. Our results showed that all strains, independently of their virulence, produce high PGE(x) levels on 4 h culture that were reduced after 8 h. However, in both culture times, higher prostanoid levels were detected after supplementation of medium with exogenous AA. Treatment with indomethacin, a COX inhibitor, induced a reduction on PGEx, as well as in fungus viability. The data provide evidence that P. brasiliensis produces prostaglandin-like molecules by metabolizing either endogenous or exogenous AA. Moreover, the results suggest the involvement of these mediators on fungal viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histamine release from guinea pig heart treated with compound 48/80 was potentiated by the cyclooxygenase inhibitors indomethacin and piroxicam but not by aspirin or phenylbutazone. This differential effect suggests that the potentiation is not merely due to an inhibition of prostaglandin synthesis. Piroxicam potentiated the histamine release induced by cardiac anaphylaxis whereas indomethacin reduced this effect. The SRS-A antagonist FPL 55712 inhibited histamine release induced by cardiac anaphylaxis, but not that evoked by compound 48/80, and also prevented the potentiation due to indomethacin and piroxicam. In total, these data suggest that the potentiation of histamine release by piroxicam and indomethacin is probably due to a diversion of arachidonic acid metabolism from the cyclooxygenase to the lipoxygenase pathways. The resulting lipoxygenase products may then regulate histamine release, with the secretion due to antigen being more sensitive to such modulation than that evoked by compound 48/80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up-and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle aim of this study was to investigate biological predictors of response and resistance to multiple myeloma treatment. Two hypothesis had been proposed as responsible of responsiveness: SNPs in DNA repair and Folate pathway, and P-gp dependent efflux. As a first objective, panel of SNPs in DNA repair and Folate pathway genes, were analyzed. It was a retrospective study in a group of 454, previously untreated, MM patients enrolled in a randomized phase III open-label study. Results show that some SNPs in Folate pathway are correlated with response to MM treatment. MTR genotype was associated with favorable response in the overall population of MM patients. However, this relation, disappear after adjustment for treatment response. When poor responder includes very good partial response, partial response and stable/progressive disease MTFHR rs1801131 genotype was associated with poor response to therapy. This relation - unlike in MTR – was still significant after adjustment for treatment response. Identification of this genetic variant in MM patients could be used as an independent prognostic factor for therapeutic outcome in the clinical practice. In the second objective, basic disposition characteristics of bortezomib was investigated. We demonstrated that bortezomib is a P-gp substrate in a bi-directional transport study. We obtain apparent permeability rate values that together with solubility values can have a crucial implication in better understanding of bortezomib pharmacokinetics with respect to the importance of membrane transporters. Subsequently, in view of the importance of P-gp for bortezomib responsiveness a panel of SNPs in ABCB1 gene - coding for P-gp - were analyzed. In particular we analyzed five SNPs, none of them however correlated with treatment responsiveness. However, we found a significant association between ABCB1 variants and cytogenetic abnormalities. In particular, deletion of chromosome 17 and t(4;14) translocation were present in patients harboring rs60023214 and rs2038502 variants respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.