972 resultados para arable cropping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the efficiency of a new method, developed for predicting density and floristic composition of weed communities in field crops. Based on the use of solaria (100 mm transparent plastic tarps lying on the soil) to stimulate weed seedlings emergence, the method was tested in Tandil, Argentina, from 1998 to 2001. The system involved corn and sunflower in commercial no-till system. Major weeds in the experiments included Digitaria sanguinalis, Setaria verticillata and S. viridis, which accounted for 98% of the weed community in the three years of experiments since 1998. Large numbers of Tagetes minuta, Chenopodium album and Ammi majus were present in 2001. Comparison of weed communities under solaria with communities in field crops indicated that the method is useful for predicting the presence and density of some major weed species, at both high and low densities, of individuals in areas of 10 ha using only five solaria. Low density of weed species makes the method particularly useful to help deciding the time for herbicide applications to avoid soil contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess the effects of a forest-field ecotone on earthworm assemblages. Five sites (blocks) differing in the type of crop rotation used in the field were studied in Central Bohemia, Czech Republic. In each block, sampling was carried out in seven parallel rows perpendicular to a transect from a forest (oak or oak-pine) to the centre of a field, both in spring and autumn 2001-2003. Individual rows were located in the forest (5 m from the edge), in the forest edge, and in the field (at 5, 10, 25, 50 and 100 m distances from the forest edge). The density and biomass of earthworms were lowest in the forest, increased markedly in the forest edge, decreased again at 5 or 10 m distance from the forest edge and then continuously increased along the distance to the field boundary. The highest number of species was found in the forest edge and in the field boundary. Individual species differed in their distribution along the transect. Both density and biomass of earthworms were correlated with distance from forest edge, soil organic matter content, soil porosity, and water infiltration rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess the effects of conventional tillage and of different direct seeding mulch-based cropping systems (DMC) on soil nematofauna characteristics. The long-term field experiment was carried out in the highlands of Madagascar on an andic Dystrustept soil. Soil samples were taken once a year during three successive years (14 to 16 years after installation of the treatments) from a 0-5-cm soil layer of a conventional tillage system and of three kinds of DMC: direct seeding on mulch from rotation soybean-maize residues; direct seeding of maize-maize rotation on living mulch of silverleaf (Desmodium uncinatum); direct seeding of bean (Phaseolus vulgaris)-soybean rotation on living mulch of kikuyu grass (Pennisetum clandestinum). The samples were compared with samples from natural fallows. The soil nematofauna, characterized by the abundance of different trophic groups and indices (MI, maturity index; EI and SI, enrichment and structure indices), allowed the discrimination of the different cropping systems. The different DMC treatments had a more complex soil food web than the tillage treatment: SI and MI were significantly greater in DMC systems. Moreover, DMC with dead mulch had a lower density of free-living nematodes than DMC with living mulch, which suggested a lower microbial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate peduncle and fruit yield in clone MS 076 and in a clonal population of drip-irrigated, early dwarf cashew trees propagated by layering, in six cropping seasons. In order to meet the increased water requirements of the crop resulting from plant growth and development, irrigation during the dry season was performed daily according to the following water regime: 15 min/plant/day during the 1st year, 30 min/plant/day during the 2nd year, 45 min/plant/day during the 3rd year and 60 min/plant/day during all subsequent years. Water was supplied by one drip emitter/plant, at an (adjustable) flow rate of 36 L/h.The research was carried out in Fortaleza-Ceará, Brazil, and a random block design was utilized, with five replicates and split-plots. The clones were assigned to plots and the cropping seasons were considered as subplots. The clonal population was superior to the clone only with regard to number of nut shells (NNS), and solely in the first season. The clone was superior to the population as to NNS and peduncle yield (PY) in the second season, and also with regard to the three evaluated traits - NNS, PY, and nut shell yield, in the last three cropping seasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive swine production is an important agricultural and economical activity in Europe. The high availability of pig slurry (PS) lead to attractive fertilization strategy to reduce costs, therefore is mainly applied as fertilizer in agricultural systems. The optimization N fertilization in these areas should be taken in into to avoid nitrates losses by lixiviation and to achieve maximum efficiency in crop nutrition. Many studies have shown that PS applications can achieve satisfactory yields in different crops by partially or completely replacing synthetic fertilizers. In addition, for the last years, in Northeast Spain (Catalonia) has been widely extended the double-cropping forage system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT One of the most relevant activities of Brazilian economy is agriculture. Among the main crops in Brazil, rice is one of high relevance. The state of Rio Grande do Sul, in Southern Brazil, is responsible for 68.7% of domestic production (IBGE, 2013). The goal of this study was to develop a low-cost methodology with a regional scope to identify suitable areas for irrigated rice cropping in this state, using spectro-temporal behavior of vegetation index by means of MODIS images and HAND model. The rice-cropped area of this study was the southern half of the State. Using the HAND model, flood areas were mapped to identify irrigated rice cultivation. We used multi-temporal images of vegetation index from MODIS sensor, covering the period from August 2001 to May 2012. To assess the results, we used data collected in the fields and cropped area information from IBGE. The results showed that the proposed methodology was satisfactory, with Kappa 0.92 and global accuracy of 98.18%. As result, MODIS sensor data and flood areas delineation by means of HAND model generated the estimate irrigated rice area for the area of study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chickpea yield potential is limited by weed competition in typical chickpea growing areas of Pakistan where zero tillage crop grown on moisture conserved from rains received during the months of September and August. The objective of this work was to evaluate the growth and yield characteristics of chickpea grown in coexistence with increasing densities of wild onion (Asphodelus tenuifolius). The experiment was comprised of six density levels viz. zero, 20, 40, 80, 160 and 320 plants m-2 of A. tenuifolius. A decrease in chickpea primary and secondary branches per plant, pods per plant, seeds per pod, 100-seed weight and seed yield was observed due to more accumulation of dry matter per increasing densities of A. tenuifolius. The increase in A. tenuifolius density accelerated chickpea yield losses and reached the maximum values of 28, 35, 42, 50, 58 and 96% at 20, 40, 80, 160 and 320 A. tenuifolius plants m-2, respectively. The yield loss estimation model showed that chickpea losses with infinite A. tenuifolius density were 60%. Yield reduction could be predicted by 2.52% with increase of one A. tenuifolius plant m-2. It is concluded that A. tenuifolius has a strong influence on chickpea seed yield and showed a linear response at the range of densities studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faisalabad city is surrounded by agricultural lands, where farmers are growing vegetables, grain crops, and fodder for auto-consumption and local marketing. To study the socioeconomic impact and resource use in these urban and peri-urban agricultural production (UPA) systems, a baseline survey was conducted during 2009–2010. A total of 140 households were selected using a stratified sampling method and interviewed with a structured questionnaire. The results revealed that 96 % of the households rely on agriculture as their main occupation. Thirty percent of the households were owners of the land and the rest cultivated either rented or sharecropped land. Most of the families (70 %) were headed by a member with primary education, and only 10 % of the household head had a secondary school certificate. Irrigationwater was obtained from waste water (37 %), canals (27 %), and mixed alternative sources (36 %). A total of 35 species were cultivated in the UPA systems of which were 65% vegetables, 15% grain and fodder crops, and 5% medicinal plants. Fifty-nine percent of the households cultivated wheat, mostly for auto-consumption. The 51 % of the respondents grew cauliflower (Brassica oleracea L.) and gourds (Cucurbitaceae) in the winter and summer seasons, respectively. Group marketing was uncommon and most of the farmers sold their produce at the farm gate (45 %) and on local markets (43 %). Seeds and fertilizers were available from commission agents and dealers on a credit basis with the obligation to pay by harvested produce. A major problem reported by the UPA farmers of Faisalabad was the scarcity of high quality irrigation water, especially during the hot dry summer months, in addition to lacking adequate quantities of mineral fertilizers and other inputs during sowing time. Half of the respondents estimated their daily income to be less than 1.25 US$ and spent almost half of it on food. Monthly average household income and expenses were 334 and 237 US$, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This exploratory study evaluated biophysical, cultural and socio-economic factors affecting crop production and land utilisation in the Nkonkobe Municipality, South Africa. The study sought to establish what farmers in the area perceive as serious threats to crop production, drivers for land abandonment, and how best current agricultural production could be intensified. The farmers’ perspectives were assessed through interviews using semi-structured and open-ended questionnaires. The results of the study revealed declining crop productivity and increase in land abandonment in the Municipality. The biophysical drivers of land abandonment were low and erratic rainfall and land degradation while the socio-economic drivers were labour shortages due to old age and youth movement to cities, lack of farming equipment and security concerns. The most abandoned crops were maize, sorghum and wheat. This trend was attributed to the labour intensiveness of cereal production and a shift in dietary preference to purchased rice. These findings should be factored in any programmes that seek to increase land utilisation and crop productivity in the Municipality.