981 resultados para antioxidant potential
Resumo:
Over the last decade a considerable increase in the number of studies addressing the use of antioxidants from natural sources has led to the identification and understanding of the potential mechanisms of biologically active components. This results from the fact that they can be used to replace synthetic antioxidants commonly used in food. Murtilla (Ugni molinae Turcz) is a native berry grown in Chile, and in the present study, the phenolic composition and antioxidant activity of its fruits were studied. Hydroalcoholic extracts of dehydrated fruits from two genotypes of murtilla (Ugni molinae Turcz.) were produced. Extracts of wild murtilla and 14-4 genotype fruits had 19.35 and 40.28mg GAE/g for Total Phenolic Compounds, 76.48, and 134.35μmol TEAC/g for DPPH, and 157.04 and 293.99 μmol TEAC/g for ABTS, respectively. Components such as quercetin, epicatechin, and gallic, benzoic and hydrocaffeic acids were identified by CG/MS analysis. All of them showed antioxidant activity. Therefore, it is possible to say that the hydroalcoholic extracts of murtilla have antioxidant potential to be used in lipidic food.
Resumo:
Abstract The search for chemopreventive/chemoprotective compounds in marine organism has been extensively reported; however, the presence of these compounds in octopus has been incipiently explored. In this research, the antimutagenic, antiproliferative, and antioxidant potential of three crude extracts (methanolic, acetonic, and hexanic) from Paroctopus limaculatus was investigated. Antimutagenic activity against aflatoxin B1 (AFB1) was evaluated through the Ames test using Salmonella typhimurium tester strains TA98 and 100. Antiproliferative activity was assessed using the standard MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay on M12.C3.F6 murine cell line. Antioxidant activity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. Hexanic extract showed the highest antimutagenic and antiproliverative activities inhibiting 80 and 43% of mutagenicity induced by AFB1 for TA98 and TA100, respectively, and showing a high antiproliferative activity at 200 and 100 µg/mL. However, when the antioxidant activity was evaluated at a concentration of 50 mg/mL, the methanolic fraction exerted inhibition of 98 and 96 % ABTS and DPPH radicals, respectively. RP-HPLC and 1H-RMN analyses suggested the presence of double bonds with extended conjugation and oxygenated compounds such as alcohols, esters, ethers or ketones. These results suggested that hexanic and methanolic extract form octopus contained compounds with chemoprotective and antioxidant properties.
Resumo:
Abstract Oxygen metabolism in cells causes the production of free radicals, which produce damage, including changes in cell structure and function. Antioxidants are substances that, at low concentrations, slow down or prevent oxidation. Fruits and vegetables contribute to the dietary supply of these compounds. The flora of the Cerrado in Brazil has shown to have high levels of bioactive compounds. This study aimed to characterize the antioxidant activity of the pulp of jatobá-do-cerrado in vitro and in vivo.In vitro antioxidant activity of the aqueous, ethanol and aqueous acetone extracts was evaluated by the DPPH method. We determined total phenols by the Folin-Ciocalteu assay and tannins by the Folin-Denis method.In vivo antioxidant potential of the aqueous acetone extract was evaluated by the TBARS technique. The aqueous acetone extract had the highest antioxidant capacity, followed by the aqueous and ethanol extracts. The same pattern occurred in the extraction of phenols and in the extraction of tannins. In vivo administration of the aqueous acetone extract inhibited lipid peroxidation compared to the control group. The inhibition of peroxidation has increased by elevating the dosage concentration of the extracts, demonstrating a significant antioxidant potential in vivo as well as in vitro.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Carotenoids are a class of natural pigments familiar to all through the orange-red to yellow colors of many fruits, vegetables, and flowers, as well as for the provitamin A activity that some of them possess. A body of scientific evidence suggests that carotenoids may scavenge and deactivate free radicals, acting thereby as antioxidants both in food systems (in vitro) and in the human organism (in vivo). Overall, epidemiological evidence links higher carotenoid intakes and tissue concentrations with reduced cancer and cardiovascular disease risk. However, research has also shown that the antioxidant activity of carotenoids may shift to a prooxidant character depending mainly on the biological environment in which they act. A summary of the antioxidant potential of natural carotenoids both in oil model systems and in vivo is presented in this article.
Resumo:
The effect of a commercial cellulase preparation on phenol liberation and extraction from black currant pomace was studied. The enzyme used, which was from Trichoderma spp., was an effective "cellulase-hemicellulase" blend with low P-glucosidase activity and various side activities. Enzyme treatment significantly increased plant cell wall polysaccharide degradation as well as increasing the availability of phenols for subsequent methanolic extraction. The release of anthocyanins and other phenols was dependent on reaction parameters, including enzyme dosage, temperature, and time. At 50 degrees C, anthocyanin yields following extraction increased by 44% after 3 h and by 60% after 1.5 h for the lower and higher enzyme/substrate ratio (E/S), respectively. Phenolic acids were more easily released in the hydrolytic mixture (supernatant) and, although a short hydrolysis time was adequate to release hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCA) required longer times. The highest E/S value of 0.16 gave a significant increase of flavonol yields in all samples. The antioxidant capacity of extracts, assessed by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, the oxygen radical absorbance capacity, and the ferric reducing antioxidant potential depended on the concentration and composition of the phenols present.
Resumo:
Free phenolic acids were extracted from a laboratory-produced sample of green malt. Aliquots of the phenolic acid extract were heated from 25 to 110°C over 27 h, representative of a commercial kilning regime. Samples were taken at regular intervals throughout heating and were assessed for changes in antioxidant activity by both the 2,2(prime)-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation scavenging (ABTS(^•+)) and the ferric-reducing antioxidant potential (FRAP) assays. Changes in the profile of the phenolic acids of the extracts were determined by HPLC. Overall, there was a decrease in both antioxidant activity level and the level of phenolic acids, but as the temperature increased from 80 to 100°C, there was an increase in both the antioxidant activity level and the level of detected phenolic acids.
Resumo:
beta-Casein and alpha-casein showed radical-scavenging activities in aqueous solution, whereas bovine serum albumin (BSA), alpha-lactalbumin and P-lactoglobulin showed much weaker antioxidant activity, when assessed by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging assay. However, beta-casein and alpha-casein showed reduced antioxidant activity after storage at 30 degrees C. An increase in radical- scavenging activity and a fall in fluorescence of the protein component were evident after 6 h, when BSA, beta-lactoglobulin or casein were mixed with EGCG, and excess EGCG was removed, indicating the formation of a complex with this protein on mixing. Storage of all the proteins with EGCG at 30 degrees C caused an increase in the antioxidant activity of the isolated protein component after separation from excess EGCG. This showed that EGCG was reacting with the proteins and that the protein-bound catechin had antioxidant properties. The reaction of EGCG with BSA, casein and beta-lactoglobulin was confirmed by the loss of fluorescence of the protein on storage, and the increase in UV absorbance between 250 and 400 nm. The increase in antioxidant activity of BSA after storage with EGCG was confirmed by the ferric reducing antioxidant potential (FRAP) and the oxygen radical antioxidant capacity (ORAC) assays. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.
Resumo:
The aim of this work was to characterize the yellow melon seeds, hybrid variety, as for their proximate composition, and to evaluate the antioxidant potential of extracts of seed in soybean oil. The extract of melon seeds (EM), obtained by extraction using ethanol: water (95:5), was applied in soybean oil at three different concentrations (500; 750 and 1000 mg kg(-1)) and submitted to Shaal oven method at 60 degrees C for 20 days. Oil samples were evaluated for peroxic a value in periods of five days. The antioxidant activity of the extract was compared to the BHT (butyl-hydroxytoluene) activity. The melon seeds showed a high nutrition value, containing high percentages of lipids (25.2%), proteins (20.1%) and fiber (30.0%). All these treatments retarded lipid oxidation in soybean oil; however the natural extracts were less effective than BHT after 10 days in the oven. The antioxidant activities of different treatments tested in this study followed the order: BHT > EM 1000 mg kg(-1) = EM 750 mg kg(-1) > EM 500 mg kg(-1)> control.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present work was to compare colonic mucosa and plasmatic oxidative stress measured concomitantly and with different degrees of injury in rats with colitis induced by trinitrobenzene sulfonic acid. Three groups were studied: control group, colitis group, and colitis exacerbated by diclofenac. Enzymatic markers of colon injury showed enhanced activity in both groups with colitis. The colitis group treated with diclofenac presented higher colonic damage score than the other groups. In both groups with colitis, higher values of tert butyl hydroperoxide-initiated-chemiluminescence and thiobarbituric acid-reactive substances in tissue and decreased total radical-trapping antioxidant potential (TRAP) levels in plasma were found. In conclusion, independently of the degree of colonic mucosa injury and inflammation, oxidative stress in tissue occurs as a consequence of pro-oxidants increase, and is not explained by a reduction of antioxidant defenses. In both conditions, TRAP determination decreases in plasma, but not in tissue.
Resumo:
Purpose: The purpose of this paper is to characterize lychee seeds regarding their centesimal composition, and also to evaluate their antioxidant potential and fatty acid profile. Design/methodology/approach: To obtain the extract, dehydrated and grinded seeds were extracted with ethyl alcohol for 30 min, at a proportion of 1:3 of seeds:ethyl alcohol, under continuous agitation, at room temperature. Afterwards, the mixture was filtered and the supernatant subjected to a rotoevaporator at 40