221 resultados para anoxia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In anoxia, mitochondria change from being ATP producers to potentially powerful ATP consumers. This change occurs, because the mitochondrial F1F0-ATPase begins to hydrolyze ATP to avoid the collapse of the proton motive force. Species that can survive prolonged periods of O2 lack must limit such ATP use; otherwise, this process would dominate glycolytic metabolism and threaten ATP delivery to essential ATP-consuming processes of the cell (e.g., ion-motive ATPases). There are two ways to limit ATP hydrolysis by the F1F0-ATPase, namely (i) reduction of the proton conductance of the mitochondrial inner membrane and (ii) inhibition of the enzyme. We assessed these two possibilities by using intact mitochondria isolated from the skeletal muscle of anoxia-tolerant frogs. Our results show that proton conductance is unaltered between normoxia and anoxia. However, ATP use by the F1F0-ATPase is limited in anoxia by a profound inhibition of the enzyme. Even so, ATP use by the F1F0-ATPase might account for ≈9% of the ATP turnover in anoxic frog skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this research was to resolve the hypoxic and anoxic responses of maize (Zea mays) sucrose (Suc) synthases known to differ in their sugar regulation. The two maize Suc synthase genes, Sus1 and Sh1, both respond to sugar and O2, and recent work suggests commonalities between these signaling systems. Maize seedlings (NK508 hybrid, W22 inbred, and an isogenic sh1-null mutant) were exposed to anoxic, hypoxic, and aerobic conditions (0, 3, and 21% O2, respectively), when primary roots had reached approximately 5 cm. One-centimeter tips were excised for analysis during the 48-h treatments. At the mRNA level, Sus1 was rapidly up-regulated by hypoxia (approximately 5-fold in 6 h), whereas anoxia had less effect. In contrast, Sh1 mRNA abundance increased strongly under anoxia (approximately 5-fold in 24 h) and was much less affected by hypoxia. At the enzyme level, total Suc synthase activity rose rapidly under hypoxia but showed little significant change during anoxia. The contributions of SUS1 and SH1 activities to these responses were dissected over time by comparing the sh1-null mutant with the isogenic wild type (Sus+, Sh1+). Sh1-dependent activity contributed most markedly to a rapid protein-level response consistently observed in the first 3 h, and, subsequently, to a long-term change mediated at the level of mRNA accumulation at 48 h. A complementary midterm rise in SUS1 activity varied in duration with genetic background. These data highlight the involvement of distinctly different genes and probable signal mechanisms under hypoxia and anoxia, and together with earlier work, show parallel induction of “feast and famine” Suc synthase genes by hypoxia and anoxia, respectively. In addition, complementary modes of transcriptional and posttranscriptional regulation are implicated by these data, and provide a mechanism for sequential contributions from the Sus1 and Sh1 genes during progressive onset of naturally occurring low-O2 events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the ascorbate-glutathione cycle was investigated in roots of young wheat (Triticum aestivum L.) seedlings that were deprived of oxygen either by subjecting them to root hypoxia or to entire plant anoxia and then re-aerated. Although higher total levels of ascorbate and glutathione were observed under hypoxia, only the total amount of ascorbate was increased under anoxia. Under both treatments a significant increase in the reduced form of ascorbate and glutathione was found, resulting in increased reduction states. Upon the onset of re-aeration the ratios started to decline rapidly, indicating oxidative stress. Hypoxia caused higher activity of ascorbate peroxidase, whereas activities of monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase were diminished or only slightly influenced. Under anoxia, activities of ascorbate peroxidase and glutathione reductase decreased significantly to 39 and 62%, respectively. However, after re-aeration of hypoxically or anoxically pretreated roots, activity of enzymes approached the control levels. This corresponds with the restoration of the high reduction state of ascorbate and glutathione within 16 to 96 h of re-aeration, depending on the previous duration of anoxia. Apparently, anoxia followed by re-aeration more severely impairs entire plant metabolism compared with hypoxia, thus leading to decreased viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O2 sensitivity of protein expression was assessed in hepatocytes from the western painted turtle. Anoxic cells consistently expressed proteins of 83.0, 70.4, 42.5, 35.3, and 16.1 kDa and suppressed proteins of 63.7, 48.2, 36.9, 29.5, and 17.7 kDa. Except for the 70.4-kDa protein, this pattern was absent during aerobic incubation with 2 mM NaCN, suggesting a specific requirement for O2. Aerobic incubation with Co2+ or Ni2+ increased expression of the 42.5-, 35.3-, and 16.1-kDa protein bands which was diminished with the heme synthesis inhibitor 4,6-dioxoheptanoic acid. Proteins suppressed in anoxia were also suppressed during aerobic incubation with Co2+ or Ni2+ but this was not relieved by 4,6-dioxoheptanoic acid. The anoxia- and Co2+/Ni2+-induced expression of the 42.5-, 35.3-, and 16.1-kDa protein bands was antagonized by 10% CO; however, with the exception of the 17.7-kDa protein, this was not found for any of the O2- or Co2+/Ni2+-suppressed proteins. Anoxia-induced proteins were compared with proteins expressed during heat shock. Heat shock proteins appeared at 90.2, 74.8, 63.4, 25, and 15.5 kDa and were of distinct molecular masses compared with the anoxia-induced proteins. These results suggest that O2-sensing mechanisms are active in the control of protein expression and suppression during anoxia and that, in the case of the 42.5-, 35.3-, 17.7-, and 16.1-kDa proteins, a conformational change in a ferro-heme protein is involved in transducing the O2 signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor hypoxia has been recognized to confer resistance to anticancer therapy since the early 20th century. More recently, its fundamental role in tumorigenesis has been established. Hypoxia-inducible factor (HIF)-1 has been identified as an important transcription factor that mediates the cellular response to hypoxia, promoting both cellular survival and apoptosis under different conditions. Increased tumor cell expression of this transcription factor promotes tumor growth In vivo and is associated with a worse prognosis in patients with non-small-cell lung cancer (NSCLC) undergoing tumor resection. The epidermal growth factor receptor (EGFR) promotes tumor cell proliferation and anglogenesis and inhibits apoptosis. Epidermal growth factor receptor expression increases in a stepwise manner during tumorigenesis and is overexpressed in > 50% of NSCLC tumors. This review discusses the reciprocal relationship between tumor cell hypoxia and EGFR. Recent studies suggest that hypoxia induces expression of EGFR and its ligands. In return, EGFR might enhance the cellular response to hypoxia by increasing expression of HIF-1α, and so act as a survival factor for hypoxic cancer cells. Immunohistochemical studies on a series of resected NSCLC tumors add weight to this contention by demonstrating a close association between expression of EGFR, HIF-1α, and:1 of HIF-1's target proteins, carbonic anhydrase IX. In this article we discuss emerging treatment strategies for NSCLC that target HIF-1, HIF-1 transcriptional targets, and EGFR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foraging by feral pigs can strongly affect wetland vegetation assemblages and so too wider ecological processes, although their effects on freshwater ecosystems have seldom been tudied. We assessed the ecological effects of pig foraging in replicate fenced and unfenced ephemeral floodplain lagoons in tropical north-eastern Australia. Pig foraging activities in unfenced lagoons caused major changes to aquatic macrophyte communities and as a consequence, to the proportional amounts of open water and bare ground. The destruction of macrophyte communities and upheaval of wetland sediments significantly affected wetland turbidity, and caused prolonged anoxia and pH imbalances in the unfenced treatments. Whilst fencing of floodplain lagoons will protect against feral pig foraging activities, our repeated measures of many biological, physical and chemical parameters inferred that natural seasonal (i.e. temporal) effects had a greater influence on these variables than did pigs. To validate this observation requires measuring how these effects are influenced by the seemingly greater annual disturbance regime of variable flooding and drying in this tropical climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results: We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion: This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all extreme events lasting less than several weeks that significantly impact ecosystems are weather related. This review examines the response of estuarine systems to intense short-term perturbations caused by major weather events such as hurricanes. Current knowledge concerning these effects is limited to relatively few studies where hurricanes and storms impacted estuaries with established environmental monitoring programs. Freshwater inputs associated with these storms were found to initially result in increased primary productivity. When hydrographic conditions are favorable, bacterial consumption of organic matter produced by the phytoplankton blooms and deposited during the initial runoff event can contribute to significant oxygen deficits during subsequent warmer periods. Salinity stress and habitat destruction associated with freshwater inputs, as well as anoxia, adversely affect benthic populations and fish. In contrast, mobile invertebrate species such as shrimp, which have a short life cycle and the ability to migrate during the runoff event, initially benefit from the increased primary productivity and decreased abundance of fish predators. Events studied so far indicate that estuaries rebound in one to three years following major short-term perturbations. However, repeated storm events without sufficient recovery time may cause a fundamental shift in ecosystem structure (Scavia et al. 2002). This is a scenario consistent with the predicted increase in hurricanes for the east coast of the United States. More work on the response of individual species to these stresses is needed so management of commercial resources can be adjusted to allow sufficient recovery time for affected populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As matas inundáveis e brejos presentes nas restingas desencadeiam uma série de processos que influenciam as características físico-químicas e biológicas do solo, levando as plantas a apresentarem mecanismos de aclimatação ou adaptação ao estresse da inundação, como alterações morfológicas e fisiológicas de forma a minimizar os efeitos da falta de oxigênio. Dentre as espécies vegetais de samambaias ocorrentes em ambientes inundáveis nas restingas, se destacam três espécies: Acrostichum danaeifolium Langsd. & Fisch., Blechnum serrulatum Rich. e Thelypteris interrupta (Willd.) K.Iwats. O objetivo deste trabalho é caracterizar os aspectos ecofisiológicos que os esporófitos dessas samambaias apresentam para sobreviver em ambientes de inundação na restinga de Maricá, estado do Rio de Janeiro. Neste sentido, foi determinada a caracterização física e química dos sítios de ocorrências destas samambaias, as variações foliares entre elas, espessura, densidade, massa por unidade de folha, teor de clorofilas e atributos quantitativos das células epidérmicas, além da quantificação e determinação à distribuição dos carboidratos. Para as variáveis dos vegetais foram feitas coletas na estação chuvosa e seca e para variáveis do solo na estação seca. Os sítios analisados se mostraram extremamente ácidos, de baixa fertilidade e com toxidez por macro e micro nutrientes, indicando que as samambaias apresentam tolerância a estes fatores. Na época chuvosa (inundação), as samambaias apresentaram queda na densidade foliar, acompanhada de um aumento de massa por unidade de folha. Esta habilidade de conseguir ganhar massa seca por área classifica todas as samambaias analisadas como tolerantes à inundação. Os altos valores de carboidratos solúveis nas folhas indicam aumento da degradação do amido foliar e o menor teor de carboidrato solúvel encontrado nos caules explicita a redução na respiração das raízes destas plantas sob anoxia/ hipoxia, para evitar a oxidação e o incremento do estoque de amido de reserva, elucidando estratégia de tolerância à inundação. A menor disponibilidade de água na estação seca afeta diretamente os atributos foliares diminuindo o índice estomático, a suculência e a massa por unidade de folha, no qual reflete na queda das concentrações de clorofilas. Os menores valores nas concentrações de clorofila têm influencia direta na presença de amidos foliar que são estocado e, alterando toda a dinâmica dos carboidratos nestas espécies. A análise do sítio onde cresce Acrostichum danaeifolium indica níveis críticos de Na no solo e provavelmente, a produção de mucilagem no caule e no pecíolo é uma estratégia de tolerância ao ambiente salino e inundado. O elevado índice de cobertura de Blechnum serrulatum em ambientes inundados indica que esta espécie possui adaptações a solos hidromórficos, entre elas, grande capacidade de estocagem de amido no caule. A maior sinuosidade das células epidérmicas em T. interrupta permite uma alta suculência mantendo o status hidrológico da folha em ambas as estações. Os resultados apresentados, além de agregar informações sobre a biologia das samambaias nos neotrópicos, irão contribuir para a compreensão da dinâmica de ocupação de espécies herbáceas em ambientes alagáveis nas restingas brasileiras