984 resultados para annexin a1 gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity. Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups. CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration. ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon its genesis during apoptosis, ceramide promotes gross reorganization of the plasma membrane structure involving clustering of signalling molecules and an amplification of vesicle formation, fusion and trafficking. The annexins are a family of proteins, which in the presence of Ca(2+), bind to membranes containing negatively charged phospholipids. Here, we show that ceramide increases affinity of annexin A1-membrane interaction. In the physiologically relevant range of Ca(2+) concentrations, this leads to an increase in the Ca(2+)sensitivity of annexin A1-membrane interaction. In fixed cells, using a ceramide-specific antibody, we establish a direct interaction of annexin A1 with areas of the plasma membrane enriched in ceramide (ceramide platforms). In living cells, the intracellular dynamics of annexin A1 match those of plasmalemmal ceramide. Among proteins of the annexin family, the interaction with ceramide platforms is restricted to annexin A1 and is conveyed by its unique N-terminal domain. We demonstrate that intracellular Ca(2+)overload occurring at the conditions of cellular stress induces ceramide production. Using fluorescently tagged annexin A1 as a reporter for ceramide platforms and annexin A6 as a non-selective membrane marker, we visualize ceramide platforms for the first time in living cells and provide evidence for a ceramide-driven segregation and internalization of membrane-associated proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of penile cancer varies between populations but is rare in developed nations. Penile cancer is associated with a number of established risk factors and associated diseases including phimosis with chronic inflammation, human papillomavirus (HPV) infection, poor hygiene and smoking. The objective of this study was to identify genes related to this type of cancer. The detection of HPV was analyzed in 47 penile squamous cell carcinoma samples. HPV DNA was detected in 48.9% of penile squamous cell carcinoma cases. High-risk HPV were present in 42.5% of cases and low-risk HPV were detected in 10.6% of penile squamous cell carcinomas. The RaSH approach identified differential expression of Annexin A1 (ANXA1), p16, RPL6, PBEF1 and KIAA1033 in high-risk HPV positive penile carcinoma; ANXA1 and p16 were overexpressed in penile squamous cells positive for high-risk HPVs compared to normal penile samples by qPCR. ANXA1 and p16 proteins were significantly more expressed in the cells from high-risk HPV-positive penile carcinoma as compared to HPV-negative tumors (p<0.0001) independently of the subtype of the carcinoma. Overexpression of ANXA1 might be mediated by HPV E6 in penile squamous cell carcinoma of patients with high-risk HPVs, suggesting that this gene plays an important role in penile cancer. © 2013 Calmon et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent appreciation of the role played by endogenous counterregulatory mechanisms in controlling the outcome of the host inflammatory response requires specific analysis of their spatial and temporal profiles. In this study, we have focused on the glucocorticoid-regulated anti-inflammatory mediator annexin 1. Induction of peritonitis in wild-type mice rapidly (4 h) produced the expected signs of inflammation, including marked activation of resident cells (e.g., mast cells), migration of blood-borne leukocytes, mirrored by blood neutrophilia. These changes subsided after 48-96 h. In annexin 1null mice, the peritonitis response was exaggerated (∼40% at 4 h), with increased granulocyte migration and cytokine production. In blood leukocytes, annexin 1 gene expression was activated at 4, but not 24, h postzymosan, whereas protein levels were increased ai both time points. Locally, endothelial and mast cell annexin 1 gene expression was not detectable in basal conditions, whereas it was switched on during the inflammatory response. The significance of annexin 1 system plasticity in the anti-inflammatory properties of dexamethasone was assessed. Clear induction of annexin 1 gene in response to dexamethasone treatment was evident in the circulating and migrated leukocytes, and in connective tissue mast cells; this was associated with the steroid failure to inhibit leukocyte trafficking, cytokine synthesis, and mast cell degranulation in the annexin 1null mouse. In conclusion, understanding how inflammation is brought under control will help clarify the complex interplay between pro- and anti-inflammatory pathways operating during the host response to injury and infection. Copyright © 2006 by The American Association of Immunologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Genética - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background There is renewed interest in the role played by specific counter-regulatory mechanisms to control the inflammatory host response, poorly investigated in human pathology. Here, we monitored the expression of two anti-inflammatory mediators, annexin 1 and galectin-1, and assessed their potential link to glucocorticoids' (GCs) effective control of nasal polyposis (NP).Methods Total patterns of mRNA and protein expression were analysed by quantitative real-time PCR (qPCR) and Western blotting analyses, whereas ultrastructural immunocytochemistry was used for spatial localization and quantification of each mediator, focusing on mast cells, eosinophils and epithelial cells.Results Up-regulation of the annexin 1 gene, and down-regulation of galectin-1 gene, was detected in polypoid tissue compared with nasal mucosa. Patient treatment with betamethasone augmented galectin-1 protein expression in polyps. At the cellular level, control mast cells and eosinophils displayed higher annexin 1 expression, whereas marked galectin-1 immunolabelling was detected in the granule matrix of mast cells. Cells of glandular duct epithelium also displayed expression of both annexin 1 and galectin-1, augmented after treatment.Conclusion Mast cells and epithelial cells appeared to be pivotal cell types involved in the expression of both annexin 1 and galectin-1. It is possible that annexin 1 and galectin-1 could be functionally associated with a specific mechanism in NP and that GC exert at least part of their beneficial effects on the airway mucosa by up-regulating, in a specific cell target fashion, these anti-inflammatory agonists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fisiopatologia da polipose rinossinusal não é totalmente compreendida, apesar de várias hipóteses em relação ao seu processo inflamatório. OBJETIVOS: Estudo prospectivo da expressão dos genes das proteínas, anexina-1 e a galectina-1, que têm ação anti-inflamatória, e sua modulação pelo glicocorticoide. MATERIAL E MÉTODOS: Onze pacientes portadores de polipose rinossinusal tiveram biopsiados seus pólipos em dois momentos: na ausência de glicocorticoide sistêmico, e na sua presença. Nas duas amostras, foi avaliada a expressão desses genes e comparada com a expressão na mucosa nasal normal do meato médio. RESULTADOS: Verificou-se que a média de expressão dos genes que codifica a anexina-1 e galectina-1 estava predominantemente aumentada, independente do uso do glicocorticoide em relação à mucosa nasal controle. Entretanto, nos pólipos sem uso de corticoide, a média de expressão do gene da anexina-1 foi significativamente maior do que nos pólipos que estavam sob uso de glicocorticoide. Com relação à galectina-1 não houve diferença significativa entre as médias de expressão antes e após o uso de glicocorticoide sistêmico. CONCLUSÃO: Os genes apresentaram um aumento da expressão na mucosa nasal polipoide, independente do uso do glicocorticoide, porém a relação destes dois genes das proteínas anti-inflamatórias com o glicocorticoide não ocorreu da mesma maneira.