924 resultados para animal study


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To study the influence on the healing of soft and hard peri-implant tissues when implants of different sizes and configurations were installed into sockets immediately after tooth extraction.Material and methods: Transmucosal cylindrical implants, 3.3 mm in diameter in the control sites, and conical 5 mm in diameter in the test sites, were installed into the distal socket of the fourth mandibular premolars in dogs immediately after tooth extraction. After 4 months, the hard and soft tissue healing was evaluated histologically. Results: All implants were integrated in mineralized mature bone. Both at the test and control sites, the alveolar crest underwent resorption. The buccal bony surface at the implant test sites (conical; 3.8 mm) was more resorbed compared with the control sites (cylindrical; 1.6 mm). The soft tissue dimensions were similar in both groups. However, in relation to the implant shoulder, the peri-implant mucosa was located more apically at the test compared with the control sites.Conclusion: The present study confirmed that the distance between the implant surface and the outer contour of the buccal alveolar bony crest influenced the degree of resorption of the buccal bone plate. Consequently, in relation to the implant shoulder, the peri-implant mucosa will be established at a more apical level, if the distance between the implant surface and the outer contour of the alveolar crest is small.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AimTo study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation.Material and methodsIn six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation.ResultsWith the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables.ConclusionsAfter 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact.To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AimTo compare the remodeling of the alveolar process at implants installed immediately into extraction sockets by applying a flap or a "flapless" surgical approach in a dog model.Material and methodsImplants were installed immediately into the distal alveoli of the second mandibular premolars of six Labrador dogs. In one side of the mandible, a full-thickness mucoperiosteal flap was elevated (control site), while contra-laterally, the mucosa was gently dislocated, but not elevated (test site) to disclose the alveolar crest. After 4 months of healing, the animals were sacrificed, ground sections were obtained and a histomorphometric analysis was performed.ResultsAfter 4 months of healing, all implants were integrated (n=6). Both at the test and at the control sites, bone resorption occurred with similar outcomes. The buccal bony crest resorption was 1.7 and 1.5 mm at the control and the test sites, respectively.Conclusions"Flapless" implant placement into extraction sockets did not result in the prevention of alveolar bone resorption and did not affect the dimensional changes of the alveolar process following tooth extraction when compared with the usual placement of implants raising mucoperiosteal flaps.To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Bressan E, Lang NP. Flap vs. "flapless" surgical approach at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 1314-1319.doi: 10.1111/j.1600-0501.2009.01959.x.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AimTo evaluate the influence (i) of various implant platform configurations and (ii) of implant surface characteristics on peri-implant tissue dimensions in a dog model.Material and methodsMandibular premolars and first molars were extracted bilaterally in six Labrador dogs. After 3 months of healing, two implants, one with a turned and a second with a moderately rough surface, were installed on each side of the mandible in the premolar region. on the right side of the mandible, implants with a tapered and enlarged platform were used, while standard cylindrical implants were installed in the left side of the mandible. Abutments with the diameter of the cylindrical implants were used resulting in a mismatch of 0.25 mm at the tapered implant sites. The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.ResultsAll implants were completely osseointegrated. A minimal buccal bone resorption was observed for both implant configurations and surface topographies. Considering the animals as the statistical unit, no significant differences were found at the buccal aspect in relation to bone levels and soft tissue dimensions. The surface topographies did not influence the outcomes either.ConclusionsThe present study failed to show differences in peri-implant tissue dimensions when a mismatch of 0.25 mm from a tapered platform to an abutment was applied. The surface topographies influence a neither marginal bone resorption or peri-implant soft tissue dimension.To cite this article:Baffone GM, Botticelli D, Pantani F, Cardoso LC, Schweikert MT, Lang NP. Influence of various implant platform configurations on peri-implant tissue dimensions: an experimental study in dog.Clin. Oral Impl. Res. 22, 2011; 438-444.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of the presence of both adjacent teeth on the level of alveolar bony crest at sites where implants were installed into the socket immediately after tooth extraction.Material and methods: Six Labrador dogs were used. Extractions of all teeth from the second premolar to the first molar were performed in the right side of the mandible, after full-thickness flap elevation. In the left side of the mandible, an endodontic treatment of the mesial root of the third and fourth premolars was performed. Full-thickness flaps were elevated, the teeth hemisected, and the distal roots removed. Immediately after, implants were bilaterally installed with the margin flush to the buccal bony crest. The implants were placed in the center of the alveolus at the third premolars and toward the lingual bony plate of the alveolus at the fourth premolars. After 3 months of healing, the animals were euthanized.Results: All implants were integrated in mature bone. More bone resorption was observed at the test compared to the control sites. At the buccal aspect, a resorption of 2.8 +/- 0.5 and 1.6 +/- 0.4 mm at the third premolars and of 2.4 +/- 0.6 and 0.8 +/- 0.7 mm at the fourth premolars were found, at the test and control sites, respectively. At the lingual aspect, the bony crest was apically located in relation to the implant shoulder 1.5 +/- 0.3 and 0.5 +/- 0.5 mm at the third premolars and 1.6 +/- 0.6 and 0.3 +/- 1.1 mm at the fourth premolars, at the test and control sites, respectively. A lower buccal bone resorption was found at the control implants placed lingually.Conclusion: Multiple extractions of teeth adjacent to a socket into which implants were installed immediately after, tooth extraction induced more alveolar bone recession compared to sites where the adjacent teeth were preserved. Moreover, an implant placed more lingually yielded less recession of the buccal aspect of the implant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the integration of implants installed using a surgical guide in augmented sites with autologous bone or deproteinized bovine bone mineral (DBBM) blocks, concomitantly with a collagen membrane.Material and methods: Mandibular molars were extracted bilaterally in six Labrador dogs, the buccal bony wall was removed, and a box-shaped defect was created. After 3 months, flaps were elevated, a bony graft was harvested from the ascending ramus, and secured to the lateral wall of the defect by means of screws. In the left mandibular side, a DBBM block was fixed into the defect. A resorbable membrane was applied at both sides, and the flaps were sutured. After 3 months, flaps were elevated, and a customized device was used as surgical guide to prepare the recipient sites in the interface between grafts and parent bone. One implant was installed in each side of the mandible. After 3 months, biopsies were harvested, and ground sections were prepared for histologic evaluation.Results: One autologous bone block graft was lost before implant installation. The width of the alveolar crest at the test sites (DBBM) was 5.4 +/- 1.2 mm before, 9.4 +/- 1.2 mm immediately after grafting, and 9.3 +/- 1 mm at implant installation. At the control sites (autologous bone), the corresponding values were: 5.2 +/- 1, 9 +/- 1.2, and 8.7 +/- 0.9 mm, respectively. All implants installed were available for histologic evaluation (n = 5). The autologous bone grafts, rich in vessels and cells, were integrated in the parent bone, and only little non-vital bone was found. The BIC% was 56.7 +/- 15.6% and 54.2 +/- 13.2% at the buccal and lingual aspects, respectively. At the test sites, the DBBM appeared to be embedded into connective tissue, and very little newly formed bone was encountered within the grafts. The BIC% was 5.8 +/- 12.3% and 51.3 +/- 14.2% at the buccal and lingual aspects, respectively.Conclusions: Autologous bone blocks used to augment the alveolar bony crest horizontally allowed the complete osseointegration of implants installed after 3 months of healing. However, similar blocks of DBBM did not promote osseointegration, although the installed implants were stable owing to the osseointegration in the sites of the parent bone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Material and Methods: Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi® surface (zirconia sand blasted, acid etched), and two with a ZirTi®-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi® surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery® instrument and one site with drill and two ZirTi® surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. Results: No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery® and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi® surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery® (67%) sites. The BIC% were also found to be higher at the ZirTi® (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. Conclusion: This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery®. Moreover, the surface coating of implants with dendrimers phosphoserine and polylysine did not improve osseointegration. © 2012 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of deproteinized bovine bone mineral in conjunction with a collagen membrane, at implants installed into sockets in a lingual position immediately after tooth extraction, and presenting initial horizontal residual buccal defects <2 mm. Material and methods: The pulp tissue of the mesial roots of 4P4 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated, and the buccal and lingual alveolar bony plates were exposed. The premolars were hemi-sectioned, and the distal roots were removed. Implants were installed in a lingual position and with the margin flush with the buccal bony crest. After installation, defects resulted at about 1.7 mm in width at the buccal aspects, both at the test and control sites. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. Results: After 3 months of healing, one implant was found not integrated and was excluded from the analysis together with the contralateral control implant. All remaining implants were integrated into mature bone. The bony crest was located at the same level of the implant shoulder, both at the test and control sites. At the buccal aspect, the most coronal bone-to-implant contact was located at a similar distance from the implant margin at the test (1.7 ± 1.0 mm) and control (1.6 ± 0.8 mm) sites, respectively. Only small residual DBBM particles were found at the test sites. Conclusion: The placement of an implant in a lingual position into a socket immediately after tooth extraction may favor a low exposure of the buccal implant surface. The use of DBBM particles, concomitantly with a collagen membrane, did not additionally improve the outcome obtained at the control sites. © 2011 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of a sub-epithelial connective tissue graft placed at the buccal aspect of implants installed immediately after tooth extraction on the dimensional changes of hard and soft tissues. Materials and Methods: In six Labrador dogs a bilateral partial- thickness dissection was made buccal to the second mandibular premolar. At the lingual aspect, full-thickness flaps were elevated. The teeth were extracted and implants installed immediately into the distal socket. A connective tissue graft was obtained from the palate and applied to the buccal aspect of the test sites, whereas contra-laterally, no graft was applied. The flaps were sutured to allow a non-submerged installation. After 4 months of healing, the animals were sacrificed, ground sections were obtained and histomorphometric analyses were performed. Results: After 4 months of healing, all implants were integrated (n = 6). Both at the test and at the control sites bone resorption occurred: 1.6 mm and 2.1 mm, respectively. The difference was not statistically significant. The coronal aspect of the peri-implant soft tissue was wider and located more coronally at the test compared with the control sites. The differences were statistically significant. Conclusions: The application of a connective tissue graft placed at the buccal aspect of the bony wall at implants installed immediately after tooth extraction yielded a minimal preservation of the hard tissues. The peri-implant mucosa, however, was significantly thicker and more coronally positioned at the test compared with the control sites. © 2012 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the integration of implants installed at the interface of pristine and grafted tissue augmented with particulate autologous bone or deproteinized bovine bone mineral (DBBM), concomitantly with a collagen membrane. Material and methods: In 6 Labrador dogs, the distal root of 3P3 and 4P4 was endodontically treated and hemi-sected, and the mesial roots extracted concomitantly with the extraction of 2P2. The buccal bony walls were removed, and two box-shaped defects, one larger and one smaller, were created. After 3 months, flaps were elevated, and the defects were filled with particulate autologous bone or DBBM in the right and left side of the mandible, respectively. Collagen membranes were used to cover the grafted areas. Three months later, flaps were elevated, and a customized device was used as surgical guide to prepare the recipient sites at the interface between grafts and pristine bone. One implant was installed in each of the four defects. After 3 months, biopsies were harvested and ground sections prepared for histological evaluation. Results: The augmentation technique was effective at all sites and all the foreseen implants were installed. In the histological analysis, all implants were integrated in mature bone, at both the buccal and lingual aspects. The most coronal bone-to-implant contact and the top of the buccal bony crest were located at a similar distance between test and control implants. However, these distances were higher at the larger compared with the smaller defects. Especially in the large defect, residual particles of DBBM were found embedded into connective tissue and located outside the bony crest. Conclusions: Particulate autologous bone as well as DBBM particles used to augment horizontally the alveolar bony process allowed for the osseointegration of implants installed after 3 months of healing. © 2012 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To study the early sequential stages of osseointegration at implants installed in alveolar bony. Materials and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Implants were installed, and the flaps were sutured to allow a fully submerged healing. The timing of the installations in the left side of the mandible and of sacrifices were performed with a schedule that various observation periods to sacrifice from 5, 10, 20, and 30 days were available so that n = 6 was obtained per each healing period. Ground sections were prepared and analyzed. Results: Newly formed bone in contact with the implant surface was found after 10 days of healing and the percentage increased up to 50% after 1 month of healing. A higher percentage was found in the trabecular compared with the cortical bony compartment. Old bone decreased by about 50% during healing, being still present after 1 month (16%). The proportions of bone debris and bone particles were at 27% after 5 days and decreased during healing to 6% after 1 month. Conclusion: Osseointegration (new bone-to-implant contact) developed at various rates for cortical and trabecular compartments, respectively. In the trabecular region, mesenchymal cells were identified, subsequently developing into new bone in contact with the implant surface. In the cortical compartment, however, resorptive processes were observed throughout all periods of healing. The proportion of newly formed bone percentage was lower compared with that of the trabecular area. Old bone was still present after 1 month of healing in both compartments. Bone debris and small bone particles appeared to be involved in initial bone formation. © 2013 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of the presence or absence of adjacent teeth on the level of the mesial and distal alveolar bony crest following healing at sites where implants were installed immediately into extraction sockets. Material and methods: Six Labrador dogs were used. In the right side of the mandible, full-thickness flaps were elevated, and the second, third, and fourth premolars and first molars were extracted. In the left side of the mandible, endodontic treatments of the mesial roots of the third and fourth premolars as well as of the first molars were performed. Full-thickness flaps were elevated, the teeth were hemi-sected, and the distal roots were removed. The second premolars were extracted as well. Subsequently, implants were bilaterally installed with the implant shoulder flush with the buccal bony crest. Implants were placed in the center of the alveoli, but at the fourth premolars, they were placed toward the lingual bony plate of the alveoli. After 3 months of healing, the animals were euthanized and histological sections of the sites prepared. Results: Larger bony crest resorption was observed at the test compared with the control sites, both at the bucco-lingual and mesio-distal aspects. The differences between test and controls for the coronal level of osseointegration were smaller than those for resorption. When data from all mesial and distal sites facing an adjacent tooth were collapsed and compared with those opposing an edentulous zone, lower bony crest resorption and deeper residual marginal defects were found at the sites with neighboring teeth. Conclusion: The extraction of teeth adjacent to a socket into which implants were installed immediately after tooth extraction caused more alveolar bone resorption both for the bucco-lingual and at the mesio-distal aspects compared with sites adjacent to a maintained tooth. © 2012 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of implant positioning into extraction sockets on bone formation at buccal alveolar dehiscence defects. Material and Methods: In six Labrador dogs the pulp tissue of the mesial roots of 4P4 was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned and the distal roots removed. The implants were placed in contact with either the buccal (test site) or with the lingual (control site) bony wall of the extraction sockets. Healing abutments were affixed and triangular buccal bony dehiscence defects, about 2.7 mm deep and 3.5 mm wide, were then prepared. No regenerative procedures were done and a non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment. Results: After 4 months of healing, the bony crest and the coronal border of osseointegration at the test sites were located 1.71 ± 1.20 and 2.50 ± 1.21 mm apically to the implant shoulder, respectively. At the control sites, the corresponding values were 0.68 ± 0.63 and 1.69 ± 0.99 mm, respectively. The differences between test and control reached statistical significance (P < 0.05). Residual marginal bone defects were found both at the test and control sites. A statistically significant difference between test and control sites was only found at the lingual aspects (depth 2.09 ± 1.01 and 1.01 ± 0.48 mm, respectively). Similar heights of the buccal biological width were observed at both sites (about 5.1 mm). Conclusions: The placement of implants in a lingual position of the extraction sockets allowed a higher degree of bone formation at buccal alveolar dehiscence defects compared with a buccal positioning. © 2012 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of the width of the buccal bony wall on hard and soft tissue dimensions following implant installation. Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, two recipient sites, one on each side of the mandible, were prepared in such a way as to obtain a buccal bony ridge width of about 2 mm in the right (control) and 1 mm in the left sides (test), respectively. Implants were installed with the coronal margin flush with the buccal alveolar bony crest. Abutments were placed and the flaps were sutured to allow a non-submerged healing. After 3 months, the animals were euthanized and ground sections obtained. Results: All implants were completely osseointegrated. In respect to the coronal rough margin of the implant, the most coronal bone-to-implant contact was apically located 1.04 ± 0.91 and 0.94 ± 0.87 mm at the test and control sites, respectively, whereas the top of the bony crest was located 0.30 ± 0.40 mm at the test and 0.57 ± 0.49 mm at the control sites. No statistically significant differences were found. A larger horizontal bone resorption, however, evaluated 1 mm apically to the rough margin, was found at the control (1.1 ± 0.7 mm) compared to the test (0.3 ± 0.3 mm) sites, the difference being statistically significant. A thin peri-implant mucosa (2.4-2.6 mm) was found at implant installation while, after 3 months of healing, a biological width of 3.90-4.40 mm was observed with no statistically significant differences between control and test sites. Conclusions: A width of the buccal bony wall of 1or 2 mm at implant sites yielded similar results after 3 months of healing in relation of hard tissue and soft tissues dimensions after implant installation. © 2012 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM), in conjunction with a collagen membrane, on bone resorption at implants installed in a lingual position immediately into extraction sockets with horizontal residual buccal defects >2.0 mm. Material & methods: The pulp tissue of the mesial roots of 1M1 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated. The molars were hemi-sectioned and the distal roots removed. Implants were installed in a lingual position and with the shoulder flush with the buccal bony crest. After installation, defects of about 2.5 and 2.7 mm in width resulted at the buccal aspects of the test and control sites, respectively. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. On the control sites, no biomaterials were applied. A non-submerged healing was allowed. Results: After 3 months of healing, one control implant was not integrated and was excluded from the analysis, together with the contralateral test implant. All remaining implants were integrated into mature bone. The buccal alveolar bony crest was resorbed more at the test compared with the control sites, 2.2 ± 0.9 mm and 1.5 ± 1.3 mm, respectively. The vertical resorption of the lingual plate was 1.6 ± 1.5 mm and 1.5 ± 1.1 mm at the test and control sites, respectively. Only small residual DBBM particles were found at the test sites (1.4%). Conclusion: The use of DBBM particles to fill buccal defects of ≥2.5 mm at implants installed immediately into alveolar extraction sockets did not preserve the buccal bony wall. © 2012 John Wiley & Sons A/S.