918 resultados para and time-dependent models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to increasing atmospheric con- centrations of greenhouse gases, the rate of time- dependent climate change is determined jointly by the strength of climate feedbacks and the e�ciency of pro- cesses which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere± ocean general circulation model (AOGCM) in experi- ments with CO2 held constant (control) and increasing at 1% per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind- driven circulation and di�uses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling±di�usion ocean models, the global average upward di�usive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less a�ected. Reduction of deep water produc- tion at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling in¯uence. The impor- tant role of di�usion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The means through which the nervous system perceives its environment is one of the most fascinating questions in contemporary science. Our endeavors to comprehend the principles of neural science provide an instance of how biological processes may inspire novel methods in mathematical modeling and engineering. The application ofmathematical models towards understanding neural signals and systems represents a vibrant field of research that has spanned over half a century. During this period, multiple approaches to neuronal modeling have been adopted, and each approach is adept at elucidating a specific aspect of nervous system function. Thus while bio-physical models have strived to comprehend the dynamics of actual physical processes occurring within a nerve cell, the phenomenological approach has conceived models that relate the ionic properties of nerve cells to transitions in neural activity. Further-more, the field of neural networks has endeavored to explore how distributed parallel processing systems may become capable of storing memory. Through this project, we strive to explore how some of the insights gained from biophysical neuronal modeling may be incorporated within the field of neural net-works. We specifically study the capabilities of a simple neural model, the Resonate-and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling. While reflecting further biological plausibility, the RAF neuron is also analytically tractable, and thus may be implemented within neural networks. In the following thesis, we provide a brief overview of the different approaches that have been adopted towards comprehending the properties of nerve cells, along with the framework under which our specific neuron model relates to the field of neuronal modeling. Subsequently, we explore some of the time-dependent neurocomputational capabilities of the RAF neuron, and we utilize the model to classify logic gates, and solve the classic XOR problem. Finally we explore how the resonate-and-fire neuron may be implemented within neural networks, and how such a network could be adapted through the temporal backpropagation algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become clear that many organisms possess the ability to regulate their mutation rate in response to environmental conditions. So the question of finding an optimal mutation rate must be replaced by that of finding an optimal mutation schedule. We show that this task cannot be accomplished with standard population-dynamic models. We then develop a "hybrid" model for populations experiencing time-dependent mutation that treats population growth as deterministic but the time of first appearance of new variants as stochastic. We show that the hybrid model agrees well with a Monte Carlo simulation. From this model, we derive a deterministic approximation, a "threshold" model, that is similar to standard population dynamic models but differs in the initial rate of generation of new mutants. We use these techniques to model antibody affinity maturation by somatic hypermutation. We had previously shown that the optimal mutation schedule for the deterministic threshold model is phasic, with periods of mutation between intervals of mutation-free growth. To establish the validity of this schedule, we now show that the phasic schedule that optimizes the deterministic threshold model significantly improves upon the best constant-rate schedule for the hybrid and Monte Carlo models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: New drugs have to be assessed in endodontic therapy due to the presence of microorganisms resistant to therapeutic procedures. Thus, this study evaluated the time- and concentration-dependent cytotoxicity of different antibiotics used in endodontic therapy. MATERIAL AND METHODS: Human gingival fibroblasts were treated and divided into the following experimental groups: Group I - control; Group II - ciprofoxacin hydrochloride; Group III - clyndamicin hydrochloride; and Group IV - metronidazole. Each drug was used at concentrations of 5, 50, 150, and 300 mg/L for 24, 48, 72, and 96 h. Cytotoxicity was evaluated by the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and spectrophotometric reading of ELISA plates. The results were analyzed by BioEstat 4.0 software using Kruskal-Wallis and Dunn's tests at a signifcance level of 5%. Cell viability was assessed for the different concentrations and times. RESULTS: All drugs presented dose-dependent cytotoxicity. Concentrations of 5 and 50 mgjL produced viable fibroblasts at all experimental times in all groups. CONCLUSIONS: Cell viability at 24 h was greater than in the other experimental times. Comparison between the same concentrations of antibiotics at different times showed that metronidazole presented the highest cell viability at 72 and 96 h compared to the other antibiotics, whereas clyndamicin hydrochloride showed higher cell viability at 72 h than ciprofoxacin hydrochloride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last three decades have seen quite dramatic changes the way we modeled time dependent data. Linear processes have been in the center stage in modeling time series. As far as the second order properties are concerned, the theory and the methodology are very adequate.However, there are more and more evidences that linear models are not sufficiently flexible and rich enough for modeling purposes and that failure to account for non-linearities can be very misleading and have undesired consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continued increase in availability of economic data in recent years and, more importantly, the possibility to construct larger frequency time series, have fostered the use (and development) of statistical and econometric techniques to treat them more accurately. This paper presents an exposition of structural time series models by which a time series can be decomposed as the sum of a trend, seasonal and irregular components. In addition to a detailled analysis of univariate speci fications we also address the SUTSE multivariate case and the issue of cointegration. Finally, the recursive estimation and smoothing by means of the Kalman filter algorithm is described taking into account its different stages, from initialisation to parameter s estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count nonculturableor non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescencemicroscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the ''impaction on nutrient agar'' method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria. [Authors]