952 resultados para amplified
Resumo:
Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mm phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mm phosphate - 10 mm borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.
Resumo:
We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.
Resumo:
Here, we report a sensitive amplified electrochemical impedimetric aptasensor for thrombin, a kind of serine protease that plays important role in thrombosis and haemostasis. For improving detection sensitivity, a sandwich sensing platform is fabricated, in which the thiolated aptamers are firstly immobilized on a gold substrate to capture the thrombin molecules, and then the aptamer functionalized Au nanoparticles (AuNPs) are used to amplify the impedimetric signals.
Nanoparticle-amplified Surface Plasmon Resonance Study of Protein Conformational Change at Interface
Resumo:
This paper reports the study of protein conformational change by Au nanoparticles (AUNPs)-amplified surface plasmon resonance (SPR) spectroscopy. Taking cytochrome c (Cyt c) as an example, this paper gives a detailed description of the construction of metal-protein-metal sandwich nanostructure consisting of an Au film underlayer, a cytochrome c intermediate layer and an AuNPs upper layer. The incorporation of AuNPs into SPR biosensing results in increased SPR sensitivity to protein conformational change as demonstrated by acid denaturation of Cyt c. It suggests the conformational change of surface-confined Cyt c leads to the distance and electromagnetic coupling variations of Au film-AuNPs.
Resumo:
White light emission from amplified spontaneous emission (ASE) was realized by optically pumping fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped semiconducting poly(9,9-dioctylfluorene) (PFO) polymer thin films. Two individual ASE peaks originating from DCJTB and PFO were observed by carefully controlling the DCJTB concentration in PFO. The studies of the ASE characteristics of DCJTB:PFO thin films lead to the conclusion that the DCJTB:PFO system with 0.3% w/w DCJTB dopant concentration in PFO showed the best ASE performance.
Resumo:
Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were significantly improved by assistant Forster energy transfer. The coguest-host system was composed of an electron transport organic molecule tris(8-hydroxyquinoline) aluminum (Alq(3)) as host and a green fluorescent dye (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one) (C545T) as assistant dopant codoped with the guest red dye DCJTB as emitter in a matrix of polystyrene (PS).
Resumo:
We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.
Resumo:
The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.
Resumo:
Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/ pulse, 6.9 cm(-1), and 82 cm(-1), respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.
Resumo:
Polyethyleneimine-functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt-induced aggregation, enabling them to be employed even under high-salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2.2'-bipyridyl)ruthenium(II). An HBPEI-coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3-aminopropyltriethoxysilane-treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G-quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.
Resumo:
A well-known red fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB) was codoped with an electron transport organic molecule tris(8-hydroxyquinohne) aluminum (Alq3) in a host matrix of polystyrene (PS), and the amplified spontaneous emission (ASE) was studied by optically pumping. It was found that the ASE performance was significantly improved by the introduction of Alq3. The Alq3:DCJTB:PS blending thin films showed a low threshold (2.4 mu J/pulse) and a high net gain coefficient (109.95 cm(-1)) compared with the pure DCJTB:PS system (threshold of 15.2 mu J/pulse and gain of 35.94 cm(-1)). The improvement of the ASE performance was considered to be attributable to the effective Foster energy transfer from Alq(3) to DCJTB. Our results demonstrate that the Alq(3):DCJTB could be a promising candidate as gain medium for red organic diode lasers.
Resumo:
Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinohzin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016 mJ pulse(-1), net gain of 52.71 cm(-1), and loss of 11.7 cm(-1) were obtained. The efficient Forster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.
Resumo:
The amplified spontaneous emission and gain characteristics of various fluorescent dyes, 2-(1,1-dimethylethyl)-6(2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo[ij] quinolizin-9-1)ethenyl)-4H-pyran-4-ylidene) propanedinitrile (DCJTB) and 4-dicyanomethylene-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM), doped in polystyrene (PS) matrices were studied and compared. It was found that DCJTB has a larger net gain, 40.72 cm(-1), a lower loss, 2.49 cm(-1), and a lower threshold, 0.16 (mJ/pulse)/cm(2), than DCM, which has a net gain of 11.95 cm(-1), a loss of 9.25 cm(-1), and a threshold of 4(mJ/pulse)/cm(2). The improvement of performance in DCJTB PS films is attributed to the larger free volume of DCJTB caused by the introduction of steric spacer groups into the DCJTB molecule.
Low threshold amplified spontaneous emission based on coumarin 151 encapsulated in mesoporous SBA-15
Resumo:
Amplified spontaneous emission (ASE) characteristics of a blue dye coumarin 151 encapsulated in a highly ordered mesoporous SBA-15 were studied. The spectra narrowing was observed and found that the threshold and loss were greatly reduced, and the gain is significantly increased compared with spin-coated coumarin 151 doped poly(4-vinylphenol) film. The ASE threshold, gain, and loss, respectively, reached 0.55 mJ pulse(-1) cm(-2), 44.78 cm(-1), and 8.9 cm(-1) for the coumarin 151 encapsulated in mesoporous SBA-15 film. The optimized lasing action owes much to the effects of the better spatial confinement of the molecules in the ordered mesoporous structure of the host SBA-15.