48 resultados para amorphization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) obtained much attention because of their unusual structures and properties as well as their potential applications. This dissertation research was focused on (1) the effects of synthesis conditions on the structures of MOFs, (2) the thermal stability of MOFs, (3) pressure-induced amorphization, and (4) the effect of high-valent ions on the structure of a MOF. This research demonstrated that the crystal structure of MOF-5 could be controlled by drying solvents. If the vacuum solvent is dimethylformamide (DMF), the crystal structure of MOF-5 is tetragonal. In contrast, if the DMF is displaced by CH2Cl2 before the vacuum, the obtained MOF-5 occupies a cubic structure. Furthermore, it was found that the tetragonal MOF-5 exhibited a mediate surface area (300-1000 m2/g). The surface area of tetragonal MOF-5 is also dependent on Zn(NO3)2/H2BDC (H2BDC: terephthalic acid) molar ratios used for its synthesis. The optimum ratio is 1.38, at which synthesized tetragonal MOF-5 exhibits the highest crystallinity and surface area (1297 m2/g). The thermal stability and decomposition of MOF-5 were systematically investigated. The thermal decomposition of cubic and tetragonal MOF-5s resulted in the same products: CO2, benzene, amorphous carbon, and crystal ZnO. The thermal decomposition is due to breaking carboxylic bridges between benzene rings and Zn4O clusters. Identifying structural relationships between crystalline and noncrystalline states is of fundamental interest in materials research. Currently, amorphization of solid materials at ambient temperature requires an ultra-high pressure (several GPa). However, this research demonstrated that MOF-5 and IRMOF-8 can be irreversibly amorphized at ambient temperature by employing a low compressing pressure of 3.5 MPa, which is 100 times lower than that required for amorphization of other solids. Furthermore, the pressure-induced amorphization (PIA) of MOFs is strongly dependent on the changeability of bond angles. If the geometric structure of a MOF can allow bond angles to be changed without breaking bonds, it can easily be amorphized by compression. This can explain why MOF-5 and IRMOF-8 can easily be amorphized via compression than Cu-BTC. It is generally recognized that zeolitic imidazolate frameworks (ZIFs) occupy much higher stability than other types of MOFs. The representative of ZIFs is Zn(2-methylimidazole)2 (ZIF-8) exhibiting high-decomposition temperature and high chemical resistance to various solvents. However, so far, it is still unknown whether the high stability of ZIF-8 can be challenged by ions, which is important for its modification by doping ions. In this research, we performed aqueous salt solution treatment on ZIF-8, and the results showed that anions (Cl¯ and NO3¯) in a solution exhibited no effect on the crystal structure of ZIF-8. However, the effect of cations (in a solution) on structure of ZIF-8 strongly depends on the cation valences. The univalent metal cations showed no effect on the structure of ZIF-8, whereas the bivalent or higher-valent metal cations caused the collapse of ZIF-8 crystal structure. Therefore, structure stability of ZIF-8 is considered when it is subjected to the application, in which high-valent metal cations are involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionoluminescence (IL) of the two SiO2 phases, amorphous silica and crystalline quartz, has been comparatively investigated in this work, in order to learn about the structural defects generated by means of ion irradiation and the role of crystalline order on the damage processes. Irradiations have been performed with Cl at 10 MeV and Br at 15 MeV, corresponding to the electronic stopping regime (i.e., where the electronic stopping power Se is dominant) and well above the amorphization threshold. The light-emission kinetics for the two main emission bands, located at 1.9 eV (652 nm) and 2.7 eV (459 nm), has been measured under the same ion irradiation conditions as a function of fluence for both, silica and quartz. The role of electronic stopping power has been also investigated and discussed within current views for electronic damage. Our experiments provide a rich phenomenological background that should help to elucidate the mechanisms responsible for light emission and defect creation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionoluminescence of α - quartz exhibits two dominant emission bands peaking at 1.9 eV. (NBOHCs) and 2.7 eV (STEs. The evolution of the red emission yield does not show a correlation with the concentrations of neither the NBOHC nor with that of other color centers. The blue emission yield closely follows the amorphization kinetics independently measured by RBS/C spectrometry. A simple theoretical model has been proposed; it assumes that the formation and recombination of STEs are the primary event and both, the light emissions and the lattice structural damage are a consequence this phenomenon. The model leads to several simple mathematical equations that can be used to simulate the IL yields and provide a reasonable fit to experimental kinetic data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la actualidad las industrias químicas, farmacéuticas y clínicas, originan contaminantes en aguas superficiales, aguas subterráneas y suelos de nuestro país, como es el caso del fenol, contaminante orgánico común y altamente dañino para los organismos, incluso a bajas concentraciones. Existen en el mercado diferentes metodologías para minimizar la contaminación pero muchos de estos procesos tienen un alto coste, generación de contaminantes, etc. La adsorción de contaminantes por medio de arcillas es un método ampliamente utilizado, encontrándose eficaz y económico. Pero la dificultad de adsorber un contaminante orgánico como el fenol motiva la creación de un material llamado organoarcillas. Las organoarcillas son arcillas modificadas con un surfactante, a su vez, los surfactantes son moléculas orgánicas que confieren a la superficie de la arcilla carga catiónica en lugar de aniónica, haciendo más fácil la adsorción de fenol. Para esta tesis se ha elegido el caolín como material adsorbente, fácilmente disponible y relativamente de bajo coste. Se ha trabajado con: arenas de caolín, material directo de la extracción, y caolín lavado, originado del proceso de lavado de las arenas de caolín. Ambos grupos se diferencian fundamentalmente por su contenido en cuarzo, ampliamente mayor en las arenas de caolín. Con el objetivo de desarrollar un material a partir del caolín y arenas de éste con capacidad de retención de contaminates, en concreto, fenol, se procedió a modificar los materiales de partida mediante tratamientos térmicos, mecánicos y/o químicos, dando lugar a compuestos con mayor superficie química reactiva. Para ello se sometió el caolín y las arenas caoliníferas a temperaturas de 750ºC durante 3h, a moliendas hasta alcanzar su amorfización, y/o a activaciones con HCl 6M o con NaOH 5M durante 3h a 90ºC. En total se obtuvieron 18 muestras, en las que se estudiaron las características físico-químicas, mineralógicas y morfológicas de cada una de ellas con el fin de caracterizarlas después de haber sufrido los tratamientos y/o activaciones químicas. Los cambios producidos fueron estudiados mediante pH, capacidad de intercambio catiónico (CEC), capacidad de adsorción de agua (WCU y CWC), distribución de tamaño de partícula (PSD), área de superficie específica (SBET), difracción de rayos X (XRD), espectroscopía infrarroja por transformada de Fourier (FTIR), métodos térmicos (TG, DTG y DTA), y microscopía electrónica de transmisión y barrido (SEM y TEM). Además se analizó los cambios producidos por los tratamientos en función de las pérdidas de Al y Si que acontece en las 18 muestras. Los resultados para los materiales derivados de la arenas caoliníferas fueron similares a los obtenidos para los caolines lavados, la diferencia radica en la cantidad de contenido de caolinita en los diferente grupos de muestras. Apoyándonos en las técnicas de caracterización se puede observar que los tratamientos térmico y molienda produce materiales amorfos, este cambio en la estructura inicial sumado a las activaciones ácida y alcalina dan lugar a pérdidas de Si y Al, ocasionando que sus propiedades físico-químicas, mineralógicas y morfológicas se vean alteradas. Un fuerte aumento es observado en las áreas superficiales y en la CEC en determinadas muestras, además entre los cambios producidos se encuentra la producción de diferentes zeolitas en porcentajes distintos con el tratamiento alcalino. Para la obtención de las organoarcillas, las 18 muestras se sometieron a la surfactación con hexadeciltrimetil amonio (HDTMA) 20 mM durante 24h a 60ºC, esta concentración de tensioactivo fue más alta que la CEC de cada muestra. Los camext bios anteriormente producidos por los tratamientos y activaciones, afectan de forma diferente en la adsorción de HDTMA, variando por tanto la adsorción del surfactante en la superficie de las muestras. Se determinó el tensioactivo en superficie por FTIR, además se realizó un análisis de componentes principales (PCA) para examinar la dependencia entre las relaciones Si/Al de las muestras en la capacidad de adsorción de tensioactivo, y para el estudio de la adsorción de HDTMA en las muestras se realizaron además del análisis termogravimétrico, aproximaciones con los modelos de Freundllich y Langmuir. Se persigue conocer las diferentes formas y maneras que tiene el tensioactivo de fijarse en la superficie de las muestras. En las organoarcillas resultantes se cuantificó el fenol adsorbido cuando éstas fueron puestas en contacto con diferentes concentraciones de fenol: 50, 500, 1000, 2000, y 2500 mg/l durante 24h. El contaminante sorbido se calculó por medio de cromatografía de gases, y se realizaron aproximaciones con los modelos de Freundllich y Langmuir. El comportamiento de adsorción de fenol en arcillas orgánicas es regido por las características de las muestras. De forma general se puede decir que las muestras de caolines lavados tienen más capacidad de adsorción de fenol que las muestras de arenas de caolín y que la activación alcalina ha proporcionado una mejora en la adsorción de fenol en los dos grupos. En consecuencia se han obtenido materiales adsorbentes heterogéneos y por tanto, con propiedades diferentes. Se ha evaluado el comportamiento global de las arenas de caolín por un lado y del caolín lavado por otro. Las arenas de caolín presentan altos niveles de cuarzo y su uso para ciertos tipos de industrias no son recomendados en ocasiones por el alto costo que el proceso de limpieza y purificación implicaría. Por ello es importante reseñar en este proyecto las aplicaciones que ofrecen algunas muestras de este grupo. Los ensayos acontecidos en esta tesis han dado lugar a las siguientes publicaciones: • Pérdida de Al y Si en caolines modificados térmica- o mecánicamente y activados por tratamientos químicos. A. G. San Cristóbal, C Vizcayno, R. Castelló. Macla 9, 113-114. (2008). • Acid activation of mechanically and thermally modfied kaolins. A. G. San Cristóbal, R. Castelló, M. A. Martín Luengo, C Vizcayno. Mater. Res. Bull. 44 (2009) 2103-2111. • Zeolites prepared from calcined and mechanically modified kaolins. A comparative study. A. G San Cristóbal, R. Castelló, M. A. Martín Luengo, C Vizcayno. Applied Clay Science 49 (2010) 239-246. • Study comparative of the sorption of HDTMA on natural and modified kaolin. A. G San Cristóbal, R. Castelló, J. M. Castillejo, C Vizcayno. Aceptada en Clays and Clay minerals. • Capacity of modified kaolin sand and washed kaolin to adsorb phenol. A. G San Cristóbal, R. Castelló, C Vizcayno. Envío a revista sujeto a la publicación del artículo anterior. ABSTRACT Today’s chemical, pharmaceutical and clinical industries generate pollutants that affect the soils and surface and ground waters of our country. Among these, phenol is a common organic pollutant that is extremely harmful to living organisms, even at low concentrations. Several protocols exist to minimize the effects of pollutants, but most are costly procedures or even generate other pollutants. The adsorption of hazardous materials onto clays is perhaps the most used, efficient and cost-saving method available. However, organic compounds such as phenol are difficult to adsorb and this has led to the development of materials known as organoclays, which are much better at remediating organic compounds. Organoclays are clays that have been modified using a surfactant. In turn, surfactants are organic molecules that confer a cationic rather than anionic charge to the clay surface, improving it’s capacity to adsorb phenol. For this doctorate project, kaolin was selected as an adsorbent material for the removal of phenol given its easy sourcing and relatively low cost. The materials investigated were kaolin sand, a directly extracted material, and washed kaolin, which is the byproduct of the kaolin sand washing process. The main difference between the materials is their quartz content, which is much higher in the kaolin sands. To generate a product from kaolin or kaolin sand capable of retaining organic pollutants such as phenol, both materials were subjected to several heat, chemical and/or mechanical treatments to give rise to compounds with a greater reactive surface area. To this end the two starting materials underwent heating at 750ºC for 3 h, grinding to the point of amorphization and/or activation with HCl 6M or NaOH 5M for 3 h at 90ºC. These treatments gave rise to 18 processed samples, which were characterized in terms of their morphological, mineralogical, and physical-chemical properties. The behaviour of these new materials was examined in terms of their pH, cation exchange capacity (CEC), water adsorption capacity (WCU and WCC), particle size distribution (PSD), specific surface area (SBET), and their X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal (DTG, DTA) and scanning and transmission electron microscopy (SEM and TEM) properties. The changes conferred by the different treatments were also examined in terms of Al and Si losses. Results for the materials derived from kaolin sands and washed kaolin were similar, with differences attributable to the kaolinite contents of the samples. The treatments heat and grinding produced amorphous materials, which when subjected to acid or alkali activation gave rise to Si and Al losses. This in turn led to a change in physico- chemical, mineralogical and morphological properties. Some samples showed a highly increased surface area and CEC. Further, among the changes produced, alkali treatment led to the generation of zeolites in different proportions depending on the sample. To produce the organoclays, the 18 samples were surfacted with hexadecyltrimethylammonium (HDTMA) 20 mM for 24 h at 60ºC. This surfactant concentration is higher than the CEC of each sample. The amount of HDTMA adsorbed onto the surface of each sample determined by FTIR varied according to treatment. A principle components analysis (PCA) was performed to examine correlations between sample Si/Al ratios and surfactant adsorption capacity. In addition, to explore HDTMA adsorption by the samples, DTG and DTA data were fitted to Freundllich and Langmuir models. The mechanisms of surfactant attachment to the sample surface were also addressed. The amount of phenol adsorbed by the resultant organoclays was determined when exposed to different phenol concentrations: 50, 500, 1000, 2000, and 2500 mg/l for 24 h. The quantity of adsorbed pollutant was estimated by gas chromatography and the data fitted to the models of Freundllich and Langmuir. Results indicate that the phenol adsorption capacity of the surfacted samples is dependent on the sample’s characteristics. In general, the washed kaolin samples showed a greater phenol adsorption capacity than the kaolon sands and alkali activation improved this capacity in the two types of sample. In conclusion, the treatments used gave rise to adsorbent materials with varying properties. Kaolin sands showed high quartz levels and their use in some industries is not recommended due to the costs involved in their washing and purification. The applications suggested by the data obtained for some of the kaolin sand samples indicate the added value of this industrial by-product. The results of this research project have led to the following publications: • Pérdida de Al y Si en caolines modificados térmica- o mecánicamente y activados por tratamientos químicos. A. G. San Cristóbal, C Vizcayno, R. Castelló. Macla 9, 113-114. (2008). • Acid activation of mechanically and thermally modfied kaolins. A. G. San Cristóbal, R. Castelló, M. A. Martín Luengo, C Vizcayno. Mater. Res. Bull. 44 (2009) 2103-2111. • Zeolites prepared from calcined and mechanically modified kaolins. A comparative study. A. G. San Cristóbal, R. Castelló, M. A. Martín Luengo, C Vizcayno. Applied Clay Science 49 (2010) 239-246. • Study comparative of the sorption of HDTMA on natural and modified kaolin. A. G. San Cristóbal, R. Castelló, J. M. Castillejo, C Vizcayno Accepted in Clays and Clay minerals. • Capacity of modified kaolin sand and washed kaolin to adsorb phenol. A. G San Cristóbal, R. Castelló, C Vizcayno. Shipment postponed, subject to the publication of the previous article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante la última década, se han llevado acabo numeroso estudios sobre la síntesis de materiales fotoluminiscentes sub-micrónicos, en gran medida, al amplio número de aplicaciones que demandan este tipo de materiales. En concreto dentro de los materiales fosforescentes o también denominados materiales con una prolongada persistencia de la luminiscencia, los estudios se han enfocado en la matriz de SrAl2O4 dopada con Europio (Eu2+) y Disprosio (Dy3+) dado que tiene mayor estabilidad y persistencia de la fosforescencia con respecto a otras matrices. Estos materiales se emplean mayoritariamente en pinturas luminiscentes, tintas, señalización de seguridad pública, cerámicas, relojes, textiles y juguetes fosforescentes. Dado al amplio campo de aplicación de los SrAl2O4:Eu, Dy, se han investigado múltiples rutas de síntesis como la ruta sol-gel, la síntesis hidrotermal, la síntesis por combustión, la síntesis láser y la síntesis en estado sólido con el fin de desarrollar un método eficiente y que sea fácilmente escalable. Sin embargo, en la actualidad el método que se emplea para el procesamiento a nivel industrial de los materiales basados en aluminato de estroncio es la síntesis por estado sólido, que requiere de temperaturas de entre 1300 a 1900oC y largos tiempos de procesamiento. Además el material obtenido tiene un tamaño de partícula de 20 a 100 μm; siendo este tamaño restrictivo para el empleo de este tipo de material en determinadas aplicaciones. Por tanto, el objetivo de este trabajo es el desarrollo de nuevas estrategias que solventen las actuales limitaciones. Dentro de este marco se plantean una serie de objetivos específicos: Estudio de los parámetros que gobiernan los procesos de reducción del tamaño de partícula mediante molienda y su relación en la respuesta fotoluminiscente. Estudio de la síntesis por combustión de SrAl2O4:Eu, Dy, evaluando el efecto de la temperatura y la cantidad de combustible (urea) en el proceso para la obtención de partículas cristalinas minimizando la presencia de fases secundarias. Desarrollo de nuevas rutas de síntesis de SrAl2O4:Eu, Dy empleando el método de sales fundidas. Determinación de los mecanismos de reacción en presencia de la sal fundida en función de los parámetros de proceso que comprende la relación de sales y reactivos, la naturaleza de la alúmina y su tamaño, la temperatura y atmósfera de tratamiento. Mejora de la eficiencia de los procesos de síntesis para obtener productos con propiedades finales óptimas en procesos factibles industrialmente para su transferencia tecnológica. Es este trabajo han sido evaluados los efectos de diferentes procesos de molienda para la reducción del tamaño de partícula del material de SrAl2O4:Eu, Dy comercial. En el proceso de molienda en medio húmedo por atrición se observa la alteración de la estructura cristalina del material debido a la reacción de hidrólisis generada incluso empleando como medio líquido etanol absoluto. Con el fin de solventar las desventajas de la molienda en medio húmedo se llevo a cabo un estudio de la molturación en seco del material. La molturación en seco de alta energía reduce significativamente el tamaño medio de partícula. Sin embargo, procesos de molienda superiores a una duración de 10 minutos ocasionan un aumento del estado de aglomeración de las partículas y disminuyen drásticamente la respuesta fotoluminiscente del material. Por tanto, se lleva a cabo un proceso de molienda en seco de baja energía. Mediante este método se consigue reducir el tamaño medio de partícula, d50=2.8 μm, y se mejora la homogeneidad de la distribución del tamaño de partícula evitando la amorfización del material. A partir de los resultados obtenidos mediante difracción de rayos X y microscopia electrónica de barrido se infiere que la disminución de la intensidad de la fotoluminiscencia después de la molienda en seco de alta energía con respecto al material inicial se debe principalmente a la reducción del tamaño de cristalito. Se observan menores variaciones en la intensidad de la fotoluminiscencia cuando se emplea un método de molienda de baja de energía ya que en estos procesos se preserva el dominio cristalino y se reduce la amorfización significativamente. Estos resultados corroboran que la intensidad de la fotoluminiscencia y la persistencia de la luminiscencia de los materiales de SrAl2O4:Eu2+, Dy3+ dependen extrínsecamente de la morfología de las partículas, del tamaño de partícula, el tamaño de grano, los defectos superficiales e intrínsecamente del tamaño de cristalito. Siendo las características intrínsecas las que dominan con respecto a las extrínsecas y por tanto tienen mayor relevancia en la respuesta fotoluminiscente. Mediante síntesis por combustión se obtuvieron láminas nanoestructuradas de SrAl2O4:Eu, Dy de ≤1 μm de espesor. La cantidad de combustible, urea, en la reacción influye significativamente en la formación de determinadas fases cristalinas. Para la síntesis del material de SrAl2O4:Eu, Dy es necesario incluir un contenido de urea mayor que el estequiométrico (siendo m=1 la relación estequiométrica). La incorporación de un exceso de urea (m>1) requiere de la presencia de un agente oxidante interno, HNO3, para que la reacción tenga lugar. El empleo de un mayor contenido de urea como combustible permite una quelación efectiva de los cationes en el sistema y la creación de las condiciones reductoras para obtener un material de mayor cristalinidad y con mejores propiedades fotoluminiscentes. El material de SrAl2O4:Eu, Dy sintetizado a una temperatura de ignición de 600oC tiene un tamaño medio 5-25 μm con un espesor de ≤1 μm. Mediante procesos de molturación en seco de baja energía es posible disminuir el tamaño medio de partícula ≈2 μm y homogenizar la distribución del tamaño de partícula pero hay un deterioro asociado de la respuesta luminiscente. Sin embargo, se puede mejorar la respuesta fotoluminiscente empleando un tratamiento térmico posterior a 900oC N2-H2 durante 1 hora que no supone un aumento del tamaño de partícula pero si permite aumentar el tamaño de cristalito y la reducción del Eu3+ a Eu2+. Con respecto a la respuesta fotoluminiscente, se obtiene valores de la intensidad de la fotoluminiscencia entre un 35%-21% con respecto a la intensidad de un material comercial de referencia. Además la intensidad inicial del decaimiento de la fosforescencia es un 20% de la intensidad del material de referencia. Por tanto, teniendo en cuenta estos resultados, es necesario explorar otros métodos de síntesis para la obtención de los materiales bajo estudio. Por esta razón, en este trabajo se desarrollo una ruta de síntesis novedosa para sintetizar SrAl2O4:Eu, Dy mediante el método de sales fundidas para la obtención de materiales de gran cristalinidad con tamaños de cristalito del orden nanométrico. Se empleo como sal fundente la mezcla eutéctica de NaCl y KCl, denominada (NaCl-KCl)e. La principal ventaja de la incorporación de la mezcla es el incremento la reactividad del sistema, reduciendo la temperatura de formación del SrAl2O4 y la duración del tratamiento térmico en comparación con la síntesis en estado sólido. La formación del SrAl2O4 es favorecida ya que se aumenta la difusión de los cationes de Sr2+ en el medio líquido. Se emplearon diferentes tipos de Al2O3 para evaluar el papel del tamaño de partícula y su naturaleza en la reacción asistida por sales fundidas y por tanto en la morfología y propiedades del producto final. Se obtuvieron partículas de morfología pseudo-esférica de tamaño ≤0.5 μm al emplear como alúmina precursora partículas sub-micrónicas ( 0.5 μm Al2O3, 0.1 μm Al2 O3 y γ-Al2O3). El mecanismo de reacción que tiene lugar se asocia a procesos de disolución-precipitación que dominan al emplear partículas de alúmina pequeñas y reactivas. Mientras al emplear una alúmina de 6 μm Al2O3 prevalecen los procesos de crecimiento cristalino siguiendo un patrón o plantilla debido a la menor reactividad del sistema. La nucleación y crecimiento de nanocristales de SrAl2O4:Eu, Dy se genera sobre la superficie de la alúmina que actúa como soporte. De esta forma se desarrolla una estructura del tipo coraza-núcleo («core-shell» en inglés) donde la superficie externa está formada por los cristales fosforescentes de SrAl2O4 y el núcleo está formado por alúmina. Las partículas obtenidas tienen una respuesta fotoluminiscente diferente en función de la morfología final obtenida. La optimización de la relación Al2O3/SrO del material de SrAl2O4:Eu, Dy sintetizado a partir de la alúmina de 6 μm permite reducir las fases secundarias y la concentración de dopantes manteniendo la respuesta fotoluminiscente. Comparativamente con un material comercial de SrAl2O4:Eu, Dy de referencia, se han alcanzado valores de la intensidad de la emisión de hasta el 90% y de la intensidad inicial de las curvas de decaimiento de la luminiscencia de un 60% para el material sintetizado por sales fundidas que tiene un tamaño medio ≤ 10μm. Por otra parte, es necesario tener en cuenta que el SrAl2O4 tiene dos polimorfos, la fase monoclínica que es estable a temperaturas inferiores a 650oC y la fase hexagonal, fase de alta temperatura, estable a temperaturas superiores de 650oC. Se ha determinado que fase monoclínica presenta propiedades luminiscentes, sin embargo existen discordancias a cerca de las propiedades luminiscentes de la fase hexagonal. Mediante la síntesis por sales fundidas es posible estabilizar la fase hexagonal empleando como alúmina precursora γ-Al2O3 y un exceso de Al2O3 (Al2O3/SrO:2). La estabilización de la fase hexagonal a temperatura ambiente se produce cuando el tamaño de los cristales de SrAl2O4 es ≤20 nm. Además se observó que la fase hexagonal presenta respuesta fotoluminiscente. El diseño de materiales de SrAl2O4:Eu,Dy nanoestructurados permite modular la morfología del material y por tanto la intensidad de la de la fotoluminiscencia y la persistencia de la luminiscencia. La disminución de los materiales precursores, la temperatura y el tiempo de tratamiento significa la reducción de los costes económicos del material. De ahí la viabilidad de los materiales de SrAl2O4:Eu,Dy obtenidos mediante los procesos de síntesis propuestos en esta memoria de tesis para su posterior escalado industrial. ABSTRACT The synthesis of sub-micron photoluminescent particles has been widely studied during the past decade because of the promising industrial applications of these materials. A large number of matrices has been developed, being SrAl2O4 host doped with europium (Eu2+) and dysprosium (Dy3+) the most extensively studied, because of its better stability and long-lasting luminescence. These functional inorganic materials have a wide field of application in persistent luminous paints, inks and ceramics. Large attention has been paid to the development of an efficient method of preparation of SrAl2O4 powders, including solgel method, hydrothermal synthesis, laser synthesis, combustion synthesis and solid state reaction. Many of these techniques are not compatible with large-scale production and with the principles of sustainability. Moreover, industrial processing of highly crystalline powders usually requires high synthesis temperatures, typically between 1300 a 1900oC, with long processing times, especially for solid state reaction. As a result, the average particle size is typically within the 20-100 μm range. This large particle size is limiting for current applications that demand sub-micron particles. Therefore, the objective of this work is to develop new approaches to overcome these limitations. Within this frame, it is necessary to undertake the following purposes: To study the parameters that govern the particle size reduction by milling and their relation with the photoluminescence properties. To obtain SrAl2O4:Eu, Dy by combustion synthesis, assessing the effect of the temperature and the amount of fuel (urea) to synthesize highly crystalline particles minimizing the presence of secondary phases. To develop new synthesis methods to obtain SrAl2O4:Eu, Dy powders. The molten salt synthesis has been proposed. As the method is a novel route, the reaction mechanism should be determine as a function of the salt mixture, the ratio of the salt, the kind of Al2O3 and their particle size and the temperature and the atmosphere of the thermal treatment. To improve the efficiency of the synthesis process to obtain SrAl2O4:Eu, Dy powders with optimal final properties and easily scalable. On the basis of decreasing the particle size by using commercial product SrAl2O4:Eu2+, Dy3+ as raw material, the effects of different milling methods have been evaluated. Wet milling can significantly alter the structure of the material through hydrolysis reaction even in ethanol media. For overcoming the drawbacks of wet milling, a dry milling-based processes are studied. High energy dry milling process allows a great reduction of the particle size, however milling times above 10 min produce agglomeration and accelerates the decrease of the photoluminescence feature. To solve these issues the low energy dry milling process proposed effectively reduces the particle size to d50=2.8 μm, and improves the homogeneity avoiding the amorphization in comparison with previous methods. The X-ray diffraction and scanning electron microscope characterization allow to infer that the large variations in PL (Photoluminescence) values by high energy milling process are a consequence mainly of the crystallite size reduction. The lesser variation in PL values by low energy milling proces is related to the coherent crystalline domain preservation and the unnoticeable amorphization. These results corroborate that the photoluminescence intensity and the persistent luminescence of the SrAl2O4:Eu2+, Dy3+ powders depend extrinsically on the morphology of the particles such as particle size, grain size, surface damage and intrinsically on the crystallinity (crystallite size); being the intrinsically effects the ones that have a significant influence on the photoluminescent response. By combustion method, nanostructured SrAl2O4:Eu2+, Dy3+ sheets with a thickness ≤1 μm have been obtained. The amount of fuel (urea) in the reaction has an important influence on the phase composition; urea contents larger than the stoichiometric one require the presence of an oxidant agent such as HNO3 to complete the reaction. A higher amount of urea (excess of urea: denoted m>1, being m=1 the stoichiometric composition) including an oxidizing agent produces SrAl2O4:Eu2+,Dy3+ particles with persistent luminescence due to the effective chelation of the cations and the creation of suitable atmospheric conditions to reduce the Eu3+ to Eu2+. Therefore, optimizing the synthesis parameters in combustion synthesis by using a higher amount of urea and an internal oxidizing agent allows to complete the reaction. The amount of secondary phases can be significantly reduced and the photoluminescence response can be enhanced. This situation is attributed to a higher energy that improves the crystallinity of the powders. The powders obtained have a particle size c.a. 5-25 μm with a thickness ≤1 μm and require relatively low ignition temperatures (600oC). It is possible to reduce the particle size by a low energy dry milling but this process implies the decrease of the photoluminescent response. However, a post-thermal treatment in a reducing atmosphere allows the improvement of the properties due to the increment of crystallinity and the reduction of Eu3+ to Eu2+. Compared with the powder resulted from solid state method (commercial reference: average particle size, 20 μm and heterogeneous particle size distribution) the emission intensity of the powder prepared by combustion method achieve the values between 35% to 21% of the reference powder intensity. Moreover, the initial intensity of the decay curve is 20% of the intensity of the reference powder. Taking in account these results, it is necessary to explore other methods to synthesize the powders For that reason, an original synthetic route has been developed in this study: the molten salt assisted process to obtain highly crystalline SrAl2O4 powders with nanometric sized crystallites. The molten salt was composed of a mixture of NaCl and KCl using a 0.5:0.5 molar ratio (eutectic mixture hereafter abbreviated as (NaCl-KCl)e). The main advantages of salt addition is the increase of the reaction rate, the significant reduction of the synthesis temperature and the duration of the thermal treatment in comparison with classic solid state method. The SrAl2O4 formation is promoted due to the high mobility of the Sr2+ cations in the liquid medium. Different kinds of Al2O3 have been employed to evaluate the role of the size and the nature of this precursor on the kinetics of reaction, on the morphology and the final properties of the product. The SrAl2O4:Eu2+, Dy3+ powders have pseudo-spherical morphology and particle size ≤0.5 μm when a sub-micron Al2O3 ( 0.5 μm Al2O3, 0.1 μm Al2O3 and γ-Al2O3) has been used. This can be attributed to a higher reactivity in the system and the dominance of dissolution-precipitation mechanism. However, the use of larger alumina (6 μm Al2O3) modifies the reaction pathway leading to a different reaction evolution. More specifically, the growth of SrAl2O4 sub-micron particles on the surface of hexagonal platelets of 6μm Al2O3 is promoted. The particles retain the shape of the original Al2O3 and this formation process can be attributed to a «core-shell» mechanism. The particles obtained exhibit different photoluminescent response as a function of the final morphology of the powder. Therefore, through this study, it has been elucidated the reaction mechanisms of SrAl2O4 formation assisted by (NaCl-KCl)e that are governed by the diffusion of SrCO3 and the reactivity of the alumina particles. Optimizing the Al2O3/SrO ratio of the SrAl2O4:Eu, Dy powders synthesized with 6 μm Al2O3 as a precursor, the secondary phases and the concentration of dopant needed can be reduced keeping the photoluminescent response of the synthesized powder. Compared with the commercial reference powder, up to 90% of the emission intensity of the reference powder has been achieved for the powder prepared by molten salt method using 6μm Al2O3 as alumina precursor. Concerning the initial intensity of the decay curve, 60% of the initial intensity of the reference powder has been obtained. Additionally, it is necessary to take into account that SrAl2O4 has two polymorphs: monoclinic symmetry that is stable at temperatures below 650oC and hexagonal symmetry that is stable above this temperature. Monoclinic phase shows luminescent properties. However, there is no clear agreement on the emission of the hexagonal structure. By molten salt, it is possible to stabilize the hexagonal phase of SrAl2O4 employing an excess of Al2O3 (Al2O3/SrO: 2) and γ-Al2O3 as a precursor. The existence of nanometric crystalline domains with lower size (≤20 nm) allows the stabilization of the hexagonal phase. Moreover, it has been evidenced that the hexagonal polymorph exhibits photoluminescent response. To sum up, the design of nanostructured SrAl2O4:Eu2+, Dy3+ materials allows to obtain different morphologies and as consequence different photoluminescent responses. The reduction of temperature, duration of the thermal treatment and the precursors materials needed imply the decrease of the economic cost of the material. Therefore, the viability, suitability and scalability of the synthesis strategy developed in this work to process SrAl2O4:Eu2+, Dy3+ are demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the evolution of structural defects in AlxGa1-xN films (with x=0.0-0.6) bombarded with kilo-electron-volt heavy ions at 77 and 300 K. We use a combination of Rutherford backscattering/channeling spectrometry and cross-sectional transmission electron microscopy. Results show that an increase in Al content not only strongly enhances dynamic annealing processes but can also change the main features of the amorphization behavior. In particular, the damage buildup behavior at 300 K is essentially similar for all the AlGaN films studied. Ion-beam-produced disorder at 300 K accumulates preferentially in the crystal bulk region up to a certain saturation level (similar to50%-60% relative disorder). Bombardment at 300 K above a critical fluence results in a rapid increase in damage from the saturation level up to complete disordering, with a buried amorphous layer nucleating in the crystal bulk. However, at 77 K, the saturation effect of lattice disorder in the bulk occurs only for xgreater than or similar to0.1. Based on the analysis of these results for AlGaN and previously reported data for InGaN, we discuss physical mechanisms of the susceptibility of group-III nitrides to ion-beam-induced disordering and to the crystalline-to-amorphous phase transition. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 × 10 m at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline zirconium nitride (ZrN) samples were irradiated with He +, Kr ++, and Xe ++ ions to high (>1·10 16 ions/cm 2) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nanoindentation. Nanoindentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To better understand high pressure behavior of solids, both silicates and oxides have been investigated to clarify the high pressure melting, phase transformations and thermal parameters as well as their size dependences, both theoretically and experimentally. ^ To judge the precision of data determined experimentally, the reliabilities of different high pressure techniques have been discussed. A thermodynamic model has been developed and demonstrated to be able to closely reproduce the melting of solids by comparison between results calculated and data obtained experimentally, including metals (Al, Ni and Pt), Silicates (Mg3Al 2Si3O12 and CaMgSi2O6), Halides (NaCl, CsCl and LiF) and Oxides (MgO, FeO and Al2O3). The melting data obtained have been discussed to address the dynamics of the Earth's interior. ^ Results obtained with Raman spectroscopy and x-ray diffraction show that solids including silicates (andradite and pyrope) and oxides (CeO2 and TiO2) undergo a series of pressure-induced phase transformations. The effects of particle size under high pressures have been investigated. The results obtained indicate that the reduction of particle size leads to the enhancement of the bulk modulus and a significant decrease of transition pressure in TiO2 (rutile) and CeO2. The pressure-induced amorphization in anatase also results from the size effects. ^ Combining the data obtained with global seismic tomography, the physics and chemistry of the Earth's mantle and the dynamics of the core-mantle interaction have been discussed. The high pressure phases of Al3+- and Fe3+-bearing minerals play important roles in the dynamics of the lower mantle. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to determine if a high Tg polymer (Eudragit® S100) could be used to stabilize amorphous domains of polyethylene oxide (PEO) and hence improve the stability of binary polymer systems containing celecoxib (CX). We propose a novel method of stabilizing the amorphous PEO solid dispersion through inclusion of a miscible, high Tg polymer, namely, that can form strong inter-polymer interactions. The effects of inter-polymer interactions and miscibility between PEO and Eudragit S100 are considered. Polymer blends were first manufactured via hot-melt extrusion at different PEO/S100 ratios (70/30, 50/50, and 30/70 wt/wt). Differential scanning calorimetry and dynamic mechanical thermal analysis data suggested a good miscibility between PEO and S100 polymer blends, particularly at the 50/50 ratio. To further evaluate the system, CX/PEO/S100 ternary mixtures were extruded. Immediately after hot-melt extrusion, a single Tg that increased with increasing S100 content (anti-plasticization) was observed in all ternary systems. The absence of powder X-ray diffractometry crystalline Bragg’s peaks also suggested amorphization of CX. Upon storage (40°C/75% relative humidity), the formulation containing PEO/S100 at a ratio of 50:50 was shown to be most stable. Fourier transform infrared studies confirmed the presence of hydrogen bonding between Eudragit S100 and PEO suggesting this was the principle reason for stabilization of the amorphous CX/PEO solid dispersion system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) have attracted significant attention during the past decade due to their high porosity, tunable structures, and controllable surface functionalities. Therefore many applications have been proposed for MOFs. All of them however are still in their infancy stage and have not yet been brought into the market place. In this thesis, the background of the MOF area is first briefly introduced. The main components and the motifs of designing MOFs are summarized, followed by their synthesis and postsynthetic modification methods. Several promising application areas of MOFs including gas storage and separation, catalysis and sensing are reviewed. The current status of commercialization of MOFs as new chemical products is also summarized. Examples of the design and synthesis of two new MOF structures Eu(4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid))·2H2O∙xDMF and Zn4O(azobenzene-4,4’-dicarboxylic acid)3∙xNMP are described. The first one contains free-base porphyrin centers and the second one has azobenzene components. Although the structures were synthesized as designed, unfortunately they did not possess the expected properties. The research idea to use MOFs as template materials to synthesize porous polymers is introduced. Several methods are discussed to grow PMMA into IRMOF-1 (Zn4O(benzene-1,4-dicarboxylate)3, IR stands for isoreticular) structure. High concentration of the monomers resulted in PMMA shell after MOF digestion while with low concentration of monomers no PMMA was left after digestion due to the small iii molecular weight. During the study of this chapter, Kitagawa and co-workers published several papers on the same topic, so this part of the research was terminated thereafter. Many MOFs are reported to be unstable in air due to the water molecules in air which greatly limited their applications. By incorporating a number of water repelling functional groups such as trifluoromethoxy group and methyl groups in the frameworks, the water stability of MOFs are shown to be significantly enhanced. Several MOFs inculding Banasorb-22 (Zn4O(2-trifluoromethoxybenzene-1,4-dicarboxylate)3), Banasorb-24 (Zn4O(2, 5-dimethylbenzene-1,4-dicarboxylate)3) and Banasorb-30 (Zn4O(2-methylbenzene-1,4-dicarboxylate)3) were synthesized and proved to have isostructures with IRMOF-1. Banasorb-22 was stable in boiling water steam for one week and Banasorb-30’s shelf life was over 10 months under ambient condition. For comparison, IRMOF-1’s structure collapses in air after a few hours to several days. Although MOF is a very popular research area nowadays, only a few studies have been reported on the mechanical properties of MOFs. Many of MOF’s applications involve high pressure conditions, so it is important to understand the behavior of MOFs under elivated pressures. The mechanical properties of IRMOF-1 and a new MOF structure Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 were studied using diamond anvil cells at Advanced Photon Source. IRMOF-1 experienced an irriversible phase transtion to a nonporous phase followed by amorphization under high pressure. Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 showed reversible compression under pressure up to 9.08GPa.