991 resultados para ammonium chloride


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mechanism for eggshell production in Schistosoma mansoni has been proposed (Wells & Cordingley, 1991), and suggests that the release of eggshell protein globules from the vitelline cells occurs under alkaline conditions within the ootype followed by their subsequent fusion to form the eggshell. Fusion and tanning of these components produces eggshell which autofluoresces. The present study was carried out to determine whether a similar process operates in Fasciola hepatica. A number of drug treatments were used to disrupt key steps in the maturation of vitelline cells. Treatment with the calcium ionophore lasalocid (1 x 10(-5) M) led to the premature release of eggshell globules from the vitelline cells but not their fusion. Incubation in monensin (1 x 10(-6) M), a sodium ionophore and ammonium chloride (NH4Cl) (5 x 10(-2) M), a weak base, resulted in the premature fusion of eggshell protein globules within the vitelline cells and premature tanning of the eggshell protein material. The copper-containing enzyme, phenol oxidase, is thought to be involved in the tanning process during the production of eggs. Diethyldithiocarbamate (DDC, 1 x 10(-3) M) is a phenol oxidase inhibitor and treatment with this compound, in combination treatments with monensin and NH4Cl, prevented fusion of the vitelline cell globules and tanning of the shell protein material. The results of the study suggest that the mechanism for eggshell formation in F. hepatica is similar to that proposed for S. mansoni and may be common to other trematodes as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystallization of hierarchical ZSM-5 in the presence of the organosilane octadecyl-dimethyl-(3-trimethoxysilyl-propyl)-ammonium chloride as the mesoporogen was investigated as a function of time and temperature. The synthesis by this method proceeds in two steps. The rapid formation of a predominantly amorphous disordered mesoporous aluminosilicate precursor phase is followed by the formation of globular highly mesoporous zeolite particles involving dissolution of the precursor phase. It is difficult to completely convert the initial phase into the final hierarchical zeolite. This limits the amount of aluminium built into the MFI network and the resulting Bronsted acidity. In the presence of iron, more crystalline hierarchical zeolite is obtained. These Fe-containing zeolites are excellent catalysts for the selective oxidation of benzene to phenol. Their hierarchical pore structure leads to higher reaction rates due to increased mass transfer and increased catalyst longevity despite more substantial coke formation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0mVdecade−1 and 1.0×10−5 to 2.7×10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A marine isolate of jáÅêçÅçÅÅìë MCCB 104 has been identified as an aquaculture probiotic antagonistic to sáÄêáç. In the present study different carbon and nitrogen sources and growth factors in a mineral base medium were optimized for enhanced biomass production and antagonistic activity against the target pathogen, sáÄêáç=Ü~êîÉóá, following response surface methodology (RSM). Accordingly the minimum and maximum limits of the selected variables were determined and a set of fifty experiments programmed employing central composite design (CCD) of RSM for the final optimization. The response surface plots of biomass showed similar pattern with that of antagonistic activity, which indicated a strong correlation between the biomass and antagonism. The optimum concentration of the carbon sources, nitrogen sources, and growth factors for both biomass and antagonistic activity were glucose (17.4 g/L), lactose (17 g/L), sodium chloride (16.9 g/L), ammonium chloride (3.3 g/L), and mineral salts solution (18.3 mL/L). © KSBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyhydroxybutyrate (PHB) is known to have applications as medical implants and drug delivery carriers and is consequently in high demand. In the present study the possibilities of harnessing potential PHB-producing vibrios from marine sediments as a new source of PHB was investigated since marine environments are underexplored. Screening of polyhydroxyalkanoate (PHA)-producing vibrios from marine sediments was performed using a fluorescent plate assay followed by spectrophotometric analysis of liquid cultures. Out of 828 isolates, Vibrio sp. BTKB33 showed maximum PHA production of 0.21 g/L and PHA content of 193.33 mg/g of CDW. The strain was identified as Vibrio azureus based on phenotypic characterization and partial 16S rDNA sequence analysis. The strain also produced several industrial enzymes: amylase, caseinase, lipase, gelatinase, and DNase. The FTIR analysis of extracted PHA and its comparison with standard PHB indicated that the accumulated PHA is PHB. Bioprocess development studies for enhancing PHA production were carried out under submerged fermentation conditions. Optimal submerged fermentation conditions for enhanced intracellular accumulation of PHA production were found to be 35 °C, pH −7, 1.5 % NaCl concentration, agitation at 120 rpm, 12 h of inoculum age, 2.5 % initial inoculum concentration, and 36 h incubation along with supplementation of magnesium sulphate, glucose, and ammonium chloride. The PHA production after optimization was found to be increased to 0.48 g/L and PHA content to426.88 mg/g of CDW, indicating a 2.28-fold increase in production. Results indicated that V. azureus BTKB33 has potential for industrial production of PHB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence of the sorption of the whitening agent sodium 4,4`-distyrylbiphenyl sulfonate in the presence of the anionic surfactant sodium dodecylsulfate or the cationic surfactant dodecyl trimethyl ammonium chloride on regenerated cellulose fibers is given by several microscopy techniques. Scanning electron microscopy provided images of the cylindrical fibers with dimensions of 3.5 cm (length) and 13.3 mu m (thickness), with empty cores of 1 mu m diameter and a smooth surface. Atomic force microscopy showed a fiber surface with disoriented nanometric domains using both tapping-mode height and phase image modes. Atomic force microscopy also showed that the whitening agent and surfactant molecules were sorbed onto the fiber surface, in agreement with the adsolubilization sorption model. Transmission electron microscopy showed fibers with nanometric parallel cylinders, surrounded by holes where the fluorescent whitening molecules accumulated. On the basis of these techniques, we conclude that the sorption process occurs preferentially on the fiber surface in contact with the water solution, and under saturated conditions, the whitening agent penetrates into the pores and are simultaneously sorbed on the pore walls bulk, forming molecular aggregates. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 2321-2327, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemiluminescence arising from the oxidation of ammonium chloride by sodium hypobromite in aqueous alkaline solution includes a series of peaks in the near-ultraviolet, which is not commonly observed in liquid-phase chemiluminescence. The dominant peak in that region has an intensity maximum at 292 nm and smaller peaks are observed at 313, 334 and 356 nm. The emitted photons are of similar energy to the Vergard–Kaplan transition of molecular nitrogen, a major product of this reaction. However, the spectral distribution is different to that of previously reported gas-phase chemiluminescence attributed to the Vergard–Kaplan transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of the nickel(II)/2-hydroxy-5-nonylacetophenone oxime (HNAPO), an active ingredient in LIX 84, extraction system were characterised in a micellar system. The extinction coefficient, λmax of HNAPO (316 nm) and the Ni2+ complex (387 nm) in a neutral micellar system, poly dispersed octa-ethyleneglycol mono-n-dodecyl ether (G12A8) were determined as 3100 and 3500 M−1 cm−1, respectively. HNAPO was found to have a neutral micellar phase and bulk aqueous phase pKa of 11.5 and 12.5, respectively. The extraction equilibrium constant, Kex, was determined to be 10−8.0, and the deviation from theory observed at high pH can be accounted for by consideration of the competition for nickel(II) ions by hydroxide ions and HNAPO. A micellar phase of octa-ethyleneglycol mono-n-dodecyl ether (C12E8) was determined to be an appropriate model of the free oil/water interface from the solubilised location of HNAPO. Utilising the interfacial probe, 4-heptadecyl-7-hydroxy coumarin (HHC) allowed the determination of the electrostatic surface potential of mixed micelles of G12A8 and sodium dodecyl sulphate (SDS) or dodecyl trimethyl ammonium chloride (DTAC). The electrostatic surface potential was a linear function of the number of additional surfactant monomers within the G12A8 micelle, for the concentration range studied. For G12A8/DTAC mixed micelles, the surface potential was given by +1.1 mV per DTAC molecule per micelle, and for G12A8/SDS mixed micelles the relationship was −1.4 mV per SDS molecule per micelle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ingestion of agents that modify blood buffering action may affect high-intensity performance. Here we present a meta-analysis of the effects of acute ingestion of three such agents - sodium bicarbonate, sodium citrate and ammonium chloride - on performance and related physiological variables (blood bicarbonate, pH and lactate). A literature search yielded 59 useable studies with 188 observations of performance effects. To perform the mixed- model meta-analysis, all performance effects were converted into a percentage change in mean power and were weighted using standard errors derived from exact p-values, confidence limits (CLs) or estimated errors of measurement. The fixed effects in the meta-analytic model included the number of performance-test bouts (linear), test duration (log linear), blinding (yes/no), competitive status (athiete/nonathlete) and sex (male/female). Dose expressed as buffering mmoL/kg/body mass (BM) was included as a strictly proportional linear effect interacted with all effects except blinding. Probabilistic inferences were derived with reference to thresholds for small and moderate effects on performance of 0.5% and 1.5%, respectively. Publication bias was reduced by excluding study estimates with a standard error >2.7%. The remaining 38 studies and 137 estimates for sodium bicarbonate produced a possibly mod- erate performance enhancement of 1.7% (90% CL ± 2.0%) with a typical dose of 3.5mmoL/kg/BM (-0.3g/kgIBM) in a single 1-minute sprint, following blinded consumption by male athletes. In the 16 studies and 45 estimates for sodium citrate, a typical dose of l.SmmoL/kgIBM (-0.5gIkgJBM) had an unclear effect on performance of 0.0% (±1.3%), while the five studies and six estimates for ammonium chloride produced a possibly moderate impairment of 1.6% (±1.9%) with a typical dose of 5.5mmoL/kgIBM (-0.3glkg/BM). Study and subject characteristics had the following modifying small effects on the enhancement of performance with sodium bicarbonate: an increase of 0.5% (±0.6%) with a 1 mmoL/kg/BM increase in dose; an increase of 0.6% (±0.4%) with five extra sprint bouts; a reduction of 0.6% (±0.9%) for each 10-fold increase in test duration (e.g. 1-10 minutes); reductions of 1.1% (± 1 .1%) with nonathletes and 0.7% (±1.4%) with females. Unexplained variation in effects between research settings was typically ± 1.2%. The only noteworthy effects involving physiological variables were a small correlation between performance and pre-exercise increase in blood bicarbonate with sodium bi- carbonate ingestion, and a very large correlation between the increase in blood bicarbonate and time between sodium citrate ingestion and exercise. The approximate equal and opposite effects of sodium bicarbonate and am- monium chloride are consistent with direct performance effects of pH, but sodium citrate appears to have some additional metabolic inhibitory effect. Important future research includes studies of sodium citrate ingestion several hours before exercise and quantification of gastrointestinal symptoms with sodium bicarbonate and citrate. Although individual responses may vary, we recommend ingestion of 0.3-0.5 glkg/BM sodium bicarbonate to improve mean power by 1.7% (±2.0%) in high-intensity races of short duration. ABSTRACT FROM AUTHOR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-quality wrinkled and few-layered graphene sheets have been produced via a mechano-thermal exfoliation process for a simple, effective and low-cost mass production. Graphene sheets were produced by first ball milling of graphite with ammonium chloride followed by thermal annealing at 800 °C in nitrogen gas. The few layered graphene sheets show highly efficient selectivity and capacity for the absorption of petroleum products as well as organic solvents such as ethanol, cyclohexane and chloroform (up to 82, 42 and 98 times of their own weight, respectively). The saturated few-layered graphene sheets can be cleaned for reuse by simply burning in air. The low-cost strategy for mass production and easy recycling routes demonstrate the great potential of few-layered graphene sheets for oil removal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)