952 resultados para alveolar bone resorption
Resumo:
Individuals with periodontal disease have increased risk of tooth loss, particularly in cases with associated loss of alveolar bone and periodontal ligament (PDL). Current treatments do not predictably regenerate damaged PDL. Collagen I is the primary component of bone and PDL extracellular matrix. SPARC/Osteonectin (SP/ON) is implicated in the regulation of collagen content in healthy PDL. In this study, periodontal disease was induced by injections of lipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans in wild-type (WT) and SP/ON-null C57/B16 mice. A 20-mu g quantity of LPS was injected between the first and second molars 3 times a week for 4 weeks, whereas PBS control was injected into the contralateral maxilla. LPS injection resulted in a significant decrease in bone volume fraction in both genotypes; however, significantly greater bone loss was detected in SP/ON-null maxilla. SP/ON-null PDL exhibited more extensive degradation of connective tissue in the gingival tissues. Although total cell numbers in the PDL of SP/ON-null were not different from those in WT, the inflammatory infiltrate was reduced in SP/ON-null PDL. Histology of collagen fibers revealed marked reductions in collagen volume fraction and in thick collagen volume fraction in the PDL of SP/ON-null mice. SP/ON protects collagen content in PDL and in alveolar bone in experimental periodontal disease.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate and compare the quantitative and qualitative inflammatory responses and bone formation potential after implantation of polyethylene tubes filled with a new calcium hydroxide containing sealer (MBPc) and Prolloot mineral trioxide aggregate (MIA). There were 48 Wistar rats divided in three groups: Group I (control group) empty polyethylene tubes were implanted in the extraction site; group II and III, polyethylene tubes were implanted filled with ProRoot mineral trioxide aggregate (MIA) and MBPc, respectively. At 7, 15, and 30 days after tube implantation, the animals were killed, the hemi-maxillas were removed and prepared to light microscopic analyses. The scores obtained were submitted to Kruskal-Wallis statistical test (p < 0.05). Significant differences between the materials were not observed. The results showed that both materials had similar biological response.
Resumo:
During bone formation, as in other tissues and organs, intense cellular proliferation and differentiation are usually observed. It has been described that programmed cell death, i.e., apoptosis, takes place in the control of the cellular population by removing of the excessive and damaged cells. Although it is generally accepted that apoptotic bodies are engulfed by professional phagocytes, the neighboring cells can also take part in the removal of apoptotic bodies. In the present study, regions of initial alveolar bone formation of rat molars were examined with the aim to verify whether osteoblasts are capable of engulfing apoptotic bodies, such as professional phagocytes. Rats aged 11-19 days were sacrificed and the maxillary fragments containing the first molar were removed and immersed in the fixative solution. The specimens fixed in glutaraldehyde-formaldehyde were processed for light microscopy and transmission electron microscopy. For the detection of apoptosis, the specimens were fixed in formaldehyde, embedded in paraffin, and submitted to the TUNEL method. The results revealed round/ovoid structures containing dense bodies on the bone surface in close contact to osteoblasts and in conspicuous osteoblast vacuoles. These round/ovoid structures showed also positivity to the TUNEL method, indicating that bone cells on the bone surface are undergoing apoptosis. Ultrathin sections showed images of apoptotic bodies being engulfed by osteoblasts. Occasionally, the osteoblasts exhibited large vacuoles containing blocks of condensed chromatin and remnants of organelles. Thus, these images suggest that osteoblasts are able to engulf and degrade apoptotic bodies. (c) 2005 Wiley-Liss, Inc.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM) particles concomitant with the placement of a collagen membrane on alveolar ridge preservation and on osseointegration of implants placed into alveolar sockets immediately after tooth extraction. Material and methods: The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs and the root canals were filled. Flaps were elevated in the right side of the mandible, and the buccal and lingual alveolar bony plates were exposed. The third premolar was hemi-sectioned and the distal root was removed. A recipient site was prepared and an implant was placed lingually. After implant installation, defects of about 0.6mm wide and 3.1mm depth resulted at the buccal aspects of the implant, both at the test and at the control sites. The same surgical procedures and measurements were performed on the left side of the mandible. However, DBBM particles with a size of 0.25-1mm were placed into the remaining defect concomitant with the placement of a collagen membrane. Results: All implants were integrated into mature bone. No residual DBBM particles were detected at the test sites after 4 months of healing. Both the test and the control sites showed buccal alveolar bone resorption, 1.8 +/- 1.1 and 2.1 +/- 1mm, respectively. The most coronal bone-to-implant contact at the buccal aspect was 2 +/- 1.1 an 2.8 +/- 1.3mm, at the test and the control sites, respectively. This difference in the distance was statistically significant. Conclusion: The application of DBBM concomitant with a collagen membrane to fill the marginal defects around implants placed into the alveolus immediately after tooth extraction contributed to improved bone regeneration in the defects. However, with regard to buccal bony crest preservation, a limited contribution of DBBM particles was achieved.
Resumo:
Background: There is some evidence showing that cyclosporin A (CsA) and nifedipine (NIF) affect bone metabolism. The purpose of this work was to study the effects of CsA and NIF, given alone or concurrently, on alveolar bone of rats of different ages. Methods: Rats 15, 30, 60, and 90 days old were treated daily with 10 mg/kg body weight of CsA subcutaneously injected and/or 50 mg/kg body weight of NIF/day given orally for 60 days. Alveolar bone of the first lower molars was morphologically and stereologically evaluated in serial 5 μm bucco-lingual paraffin sections, stained with hematoxylin and eosin. Serum calcium and alkaline phosphatase levels were measured in all animals at the end of the experimental period. Results: Rats treated with CsA or NIF alone or CsA and NIF concurrently showed decreased alveolar bone density. CsA was more effective than NIF. A significant decrease in serum calcium was found only in animals treated with CsA or CsA/NIF. The results were similar regardless of age. Conclusions: These results indicate that the decrease in the alveolar bone volume in rats caused by CsA and NIF alone or concurrently is not age dependent. Furthermore, NIF (50 mg/kg) did not further increase the loss of alveolar bone volume induced by CsA (10 mg/kg).
Resumo:
The reproducibility of measurements of alveolar bone loss on radiographs may be a problem on epidemiologic studies, as they are based on comparisons of the diagnosis of various examiners. The aim of the present research paper was to assess the inter- and intra-examiner reproducibility of measurements of the interproximal alveolar bone loss on non-manipulated digital radiographs and after the application of image filters. Five Oral Radiologists measured the distance between the cementoenamel junction (CEJ) to the alveolar crest or to the deepest point of the bony defect on 12 interproximal digital radiographs of molars and bicuspids of a dry human skull. The digital manipulation and the linear measurements were obtained with the Trophy Windows software (Throphy®). For each image, six different versions were created: 1) non-manipulated; 2) bright-contrast adjustment; 3) negative; 4) negative with brightness-contrast adjustment; 5) pseudo-colored; 6) pseudo-colored with brightness-contrast adjustment. In order to prevent interpretation bias because of the repetition of measurements, the examiners measured the radiographs in a random sequence. The two-way ANOVA test at 5% level of significance to compare the means of readings of the same operator with each filter indicated p<0.05 for the majority of operators, while the comparison between the mean values of operators using the same filter indicated p>0.05 for all filters. Based on the results, we concluded that linear measurements of interproximal alveolar bone loss on digital radiographs are highly reproducible among examiners. Nevertheless, the application of image filters significantly influenced the degree of intra-examiner reproducibility. Some filters even reduced the reproducibility of intra-examiner readings.
Resumo:
Several studies have shown that diabetics are more susceptible to the development of severe periodontal disease. Currently, the use of animal models can be considered a feasible alternative in radiographic assessments of these two pathologies. The purpose of this radiographic study was to evaluate the effect of induced diabetes mellitus on alveolar bone loss after 30 days of ligature-induced periodontal disease. Sixty-four Wistar rats were randomly distributed into four experimental groups. Diabetes was induced in Groups II and IV, while periodontal disease was induced in Groups III and IV; Group I was used as control. In order to perform the radiographic assessment of the specimens, the rats were killed on the 3rd and 30th days of the study. Radiographic measurements were assessed with ANOVA and Tukey's test to determine statistically significant differences (p < 0.05). It was observed that Groups III and IV featured greater bone loss when compared to Groups I and II. Only the diabetic group with periodontal disease (Group IV) featured statistically significant greater bone loss when compared to the other groups. These results suggested that the alveolar bone loss resulting from the periodontal disease installation is greater when associated to the diabetes mellitus.
Resumo:
Cyclosporine (CsA) and tacrolimus (FK 506) exert complex, incompletely understood actions on bone. The objective of the study was to evaluate the effects of long-term tacrolimus therapy on the periodontium. Rats were treated for 60, 120, 180, and 240 days with daily subcutaneous injections of 1 mg/kg body weight of FK 506. After the experimental period, we obtained serum levels of calcium and alkaline phosphatase (ALP). After histological processing, the alveolar bone and cementum, as well as volume densities of bone (Vb) and osteoclasts (Vo), were assessed at the regions of the lower first molar. There was a tendency toward a statistically significant decrease in ALP levels with FK 506; however, serum calcium levels increased during the long periods. At 60, 180, and 240 days of treatment with FK 506, we did not observe Vb and Vo alterations. At 120 days of treatment, there was an evident decrease in Vb, but it did not show alveolar bone loss. We did not observe any alterations of cementum among rats treated with FK 506. It may be concluded that FK 506 administration did not induce side effects on the periodontium. © 2009 Elsevier Inc. All rights reserved.