964 resultados para alternative stable states
Resumo:
Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice–covered “snowball” state. Although low-order energy balance models of the climate are known to exhibit intransitivity (i.e., more than one climate state for a given set of governing equations), the results reported here are the first to demonstrate that this is a property of a complex coupled climate model with a consistent set of equations representing the 3D dynamics of the ocean and atmosphere. The coupled model notably includes atmospheric synoptic systems, large-scale circulation of the ocean, a fully active hydrological cycle, sea ice, and a seasonal cycle. There are no flux adjustments, with the system being solely forced by incoming solar radiation at the top of the atmosphere. It is demonstrated that the multiple equilibria owe their existence to the presence of meridional structure in ocean heat transport: namely, a large heat transport out of the tropics and a relatively weak high-latitude transport. The associated large midlatitude convergence of ocean heat transport leads to a preferred latitude at which the sea ice edge can rest. The mechanism operates in two very different ocean circulation regimes, suggesting that the stabilization of the large ice cap could be a robust feature of the climate system. Finally, the role of ocean heat convergence in permitting multiple equilibria is further explored in simpler models: an atmospheric GCM coupled to a slab mixed layer ocean and an energy balance model
Resumo:
We report a theoretical investigation of thermal hysteresis in magnetic nanoelements. Thermal hysteresis originates in the existence of meta-stable states in temperature intervals which may be tuned by small values of the external magnetic field, and are controlled by the systems geometric dimensions as well as the composition. Two systems have been investigated. The first system is a trilayer consisting of one antiferromagnetic MnF2 film, exchange coupled with two Fe lms. At low temperatures the ferromagnetic layers are oriented in opposite directions. By heating in the presence of an external magnetic field, the Zeeman energy induces a gradual orientation of the ferromagnets with the external field and the nucleation of spin- op-like states in the antiferromagnetic layer, leading eventually, in temperatures close to the Neel temperature, to full alignment of the ferromagnetic films and the formation of frustrated exchange bonds in the center of the antiferromagnetic layer. By cooling down to low temperatures, the system follows a different sequence of states, due to the anisotropy barriers of both materials. The width of the thermal hysteresis loop depends on the thicknesses of the FM and AFM layers as well as on the strength of the external field. The second system consists in Fe and Permalloy ferromagnetic nanoelements exchange coupled to a NiO uncompensated substrate. In this case the thermal hysteresis originates in the modifications of the intrinsic magnetic
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
1. A method for obtaining the end-systolic left ventricular (LV) pressure-diameter and stress-diameter relationships in man was critically analyzed.2. Pressure-diameter and stress-diameter relationships were determined throughout the cardiac cycle by combining standard LV manometry with M-mode echocardiography. Nine adult patients with heart disease and without heart failure were studied during intracardiac catheterization under three different conditions of arterial pressure, i.e., basal (B) condition (mean +/- SD systolic pressure, 102 +/- 10 mmHg) and two stable states of arterial hypertension (H(I), 121 +/- 12 mmHg; H(II), 147 +/- 17 mmHg) induced by venous infusion of phenylephrine after parasympathetic autonomic blockade with 0.04 mg/kg atropine.3. Significant reflex heart rate variation with arterial hypertension was observed (B, 115 +/- 20 bpm; H(I), 103 +/- 14 bpm; H(II), 101 +/- 13 bpm) in spite of the parasympathetic blockade with atropine. The linear end-systolic pressure-diameter and stress-diameter relationships ranged from 53.0 to 160.0 mmHg/cm and from 97.0 to 195.0 g/cm3, respectively.4. The end-systolic LV pressure-diameter and stress-diameter relationship lines presented high and variable slopes. The slopes, which are indicators of myocardial contractility, are susceptible to modifications by small deviations in the measurement of the ventricular diameter or by delay in the pressure curve recording.
Resumo:
Aims: The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires. Methods: We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment. Results: Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment. Conclusions: Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classics in the city size distributions are snapshots of stable states within urban systems in flux.
Resumo:
Hypernuclear physics is currently attracting renewed interest, due tornthe important role of hypernuclei spectroscopy rn(hyperon-hyperon and hyperon-nucleon interactions) rnas a unique toolrnto describe the baryon-baryon interactions in a unified way and to rnunderstand the origin of their short-range.rnrnHypernuclear research will be one of the main topics addressed by the {sc PANDA} experimentrnat the planned Facility for Antiproton and Ion Research {sc FAIR}.rnThanks to the use of stored $overline{p}$ beams, copiousrnproduction of double $Lambda$ hypernuclei is expected at thern{sc PANDA} experiment, which will enable high precision $gamma$rnspectroscopy of such nuclei for the first time.rnAt {sc PANDA} excited states of $Xi^-$ hypernuclei will be usedrnas a basis for the formation of double $Lambda$ hypernuclei.rnFor their detection, a devoted hypernuclear detector setup is planned. This setup consists ofrna primary nuclear target for the production of $Xi^{-}+overline{Xi}$ pairs, a secondary active targetrnfor the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform $gamma$ spectroscopy.rnrnIn the present work, the feasibility of performing high precision $gamma$rnspectroscopy of double $Lambda$ hypernuclei at the {sc PANDA} experiment has been studiedrnby means of a Monte Carlo simulation. For this issue, the designing and simulation of the devoted detector setup as well as of the mechanism to produce double $Lambda$ hypernuclei have been optimizedrntogether with the performance of the whole system. rnIn addition, the production yields of double hypernuclei in excitedrnparticle stable states have been evaluated within a statistical decay model.rnrnA strategy for the unique assignment of various newly observed $gamma$-transitions rnto specific double hypernuclei has been successfully implemented by combining the predicted energy spectra rnof each target with the measurement of two pion momenta from the subsequent weak decays of a double hypernucleus.rn% Indeed, based on these Monte Carlo simulation, the analysis of the statistical decay of $^{13}_{Lambda{}Lambda}$B has been performed. rn% As result, three $gamma$-transitions associated to the double hypernuclei $^{11}_{Lambda{}Lambda}$Bern% and to the single hyperfragments $^{4}_{Lambda}$H and $^{9}_{Lambda}$Be, have been well identified.rnrnFor the background handling a method based on time measurement has also been implemented.rnHowever, the percentage of tagged events related to the production of $Xi^{-}+overline{Xi}$ pairs, variesrnbetween 20% and 30% of the total number of produced events of this type. As a consequence, further considerations have to be made to increase the tagging efficiency by a factor of 2.rnrnThe contribution of the background reactions to the radiation damage on the germanium detectorsrnhas also been studied within the simulation. Additionally, a test to check the degradation of the energyrnresolution of the germanium detectors in the presence of a magnetic field has also been performed.rnNo significant degradation of the energy resolution or in the electronics was observed. A correlationrnbetween rise time and the pulse shape has been used to correct the measured energy. rnrnBased on the present results, one can say that the performance of $gamma$ spectroscopy of double $Lambda$ hypernuclei at the {sc PANDA} experiment seems feasible.rnA further improvement of the statistics is needed for the background rejection studies. Moreover, a more realistic layout of the hypernuclear detectors has been suggested using the results of these studies to accomplish a better balance between the physical and the technical requirements.rn
Resumo:
Late long-term potentiation (L-LTP) denotes long-lasting strengthening of synapses between neurons. L-LTP appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing ongoing activity and biochemical pathways important for L-LTP. In this study, ongoing activity was incorporated into two such models - a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction simply and intuitively, and the detailed model adds activation of essential kinases by Ca(2+). Ongoing activity was modeled as continual brief elevations of Ca(2+). In each model, two stable states of synaptic strength/weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca(2+) transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low basal weight to a high weight that is stabilized by ongoing activity. Bistability was robust to parameter variations in both models. Simulations illustrated that prolonged periods of decreased activity reset synaptic strengths to low values, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength. Further investigations that examine the dynamics of activity and synaptic maintenance can be expected to help in understanding how memories are preserved for up to a lifetime in animals including humans.
Resumo:
The transition of many Caribbean reefs from coral to macroalgal dominance has been a prominent issue in coral reef ecology for more than 20 years. Alternative stable state theory predicts that these changes are reversible but, to date, there is little indication of this having occurred. Here we present evidence of the initiation of such a reversal in Jamaica, where shallow reefs at five sites along 8 km of coastline now are characterized by a sea urchin-grazed zone with a mean width of 60 m. In comparison to the seaward algal zone, macroalgae are rare in the urchin zone, where the density of Diadema antillarum is 10 times higher and the density of juvenile corals is up to 11 times higher. These densities are close to those recorded in the late 1970s and early 1980s and are in striking contrast to the decade-long recruitment failure for both Diadema and scleractinians. If these trends continue and expand spatially, reefs throughout the Caribbean may again become dominated by corals and algal turf.
Self-organized phase transitions in neural networks as a neural mechanism of information processing.
Resumo:
Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.
Resumo:
Deflections of jets discharged into a reservoir with a free surface are investigated numerically. The jets are known to deflect towards either side of the free surface or the bottom, whose direction is not determined uniquely in some experimental conditions, i.e. there are multiple stable states realizable in the same condition. The origin of the multiple stable states is explored by utilizing homotopy transformations in which the top boundary of the reservoir is transformed from a rigid to a free boundary and also the location of the outlet throat is continuously moved from mid-height to the top. We depicted bifurcation diagrams of the flow compiling the data of numerical simulations, from which we identified the origin as an imperfect pitchfork bifurcation, and obtained an insight into the mechanism for the direction to be determined. The parameter region where such multiple stable states are possible is also delimited. © 2011 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.
Resumo:
We describe a free space quantum cryptography system which is designed to allow continuous unattended key exchanges for periods of several days, and over ranges of a few kilometres. The system uses a four-laser faint-pulse transmission system running at a pulse rate of 10MHz to generate the required four alternative polarization states. The receiver module similarly automatically selects a measurement basis and performs polarization measurements with four avalanche photodiodes. The controlling software can implement the full key exchange including sifting, error correction, and privacy amplification required to generate a secure key.
Resumo:
The origins of agriculture and the shift from hunting and gathering to committed agriculture is regarded as one of the major transitions in human history. Archeologists and anthropologists have invested significant efforts in explaining the origins of agriculture. A period of gathering intensification and experimentation and pursuing a mixed economic strategy seems the most plausible explanation for the transition to agriculture and provides an approach to study a process in which several nonlinear processes may have played a role. However, the mechanisms underlying the transition to full agriculture are not completely clear. This is partly due to the nature of the archeological record, which registers a practice only once it has become clearly established. Thus, points of transitions have limited visibility and the mechanisms involved in the process are difficult to untangle. The complexity of such transitions also implies that shifts can be distinctively different in particular environments and under varying historical and social conditions. In this paper we discuss some of the elements involved in the transition to food production within the framework of resilience theory. We propose a theoretical conceptual model in which the resilience of livelihood strategies lies at the intersection of three spheres: the environmental, economical, and social domains. Transitions occur when the rate of change, in one or more of these domains, is so elevated or its magnitude so large that the livelihood system is unable to bounce back to its original state. In this situation, the system moves to an alternative stable state, from one livelihood strategy to another.
Resumo:
Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {Cd(bpdc)(bpNDI)]4.5H(2)ODMF}(n) (1) has been constructed from a mixed chromophoric system. The -oxo-bridged secondary building unit, {Cd-2(-OCO)(2)}, guides the parallel alignment of bpNDI (N,N-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH(2)=4,4-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.