981 resultados para alpha-hydroxycarboxylic acids
Resumo:
Control of crystal polymorph and size is very important in many application fields. Herein we demonstrate that Langmuir-Blodgett (LB) films of stearic acid (SA) and octadecylamine (ODA) can serve as templates and generate different polymorphs of glycine crystals. In the neutral aqueous solutions, gamma-glycine crystallizes on LB films of ODA while the polymorphic outcome becomes the (x-form on LB films of SA. These observed results could be explained by the electrostatic interactions and geometric lattice matching at the LB film/crystal interfaces, respectively. By keeping the appropriate supersaturation, we have successfully controlled the number of crystals grown on LB films; for example, in some certain cases, only one piece of crystal was grown on LB films in solution. Therefore, large crystals of centimeter size could be prepared. These experimental results suggest a new approach to produce an organic crystal with bulk scale.
Resumo:
The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.
Resumo:
Three new bromophenols C-N coupled with nucleoside base derivatives (1-3) and three new brominated 1,2,3,4-tetrahydroisoquinolines (5-7, together with a new brominated tyrosine derivative (4, have been isolated from polar fractions of an ethanolic extract of the red alga Rhodomela confervoides. By spectroscopic and chemical methods including HRMS and 2D NMR data, their structures were determined as 7-[3-bromo-2-(2,3-dibromo-4,5-dihydroxybenzyl)-4,5-dihydroxybenzyl]-3,7-dihydro-1H-purine-2,6-dione (1), 7-(2,3-dibromo-4,5-dihydroxybenzyl)-3,7-dihydro-1H-purine-2,6-dione (2, 9-[3-bromo-2-(2,3-dibromo-4,5-dihydroxybenzyl)-4,5-dihydroxybenzyl]adenine (3), (-)-8S-(3-bromo-5-hydroxy-4-methoxy)phenylalanine (4), (-)-3S-8-bromo-6-hydroxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (5), methyl (-)-3S-8-bromo-6-hydroxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (6), and methyl (-)-3S-6-bromo-8-hydroxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7). Compounds 5-7 were semisynthesized by using 4 as the starting material.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
3-Substituted-5-phenylmorpholinones have been demonstrated to act as N-protected C-terminus activated alpha-amino acids capable of undergoing solution phase N-terminus peptide extension following standard coupling procedures. The N-acylated morpholinones do not undergo epimerisation of the stereocentre of the C-terminus amino acid residue as oxazolone formation is sterically prevented, although C-terminus peptide coupling is still possible. This convergent approach to peptide synthesis is exemplified by the preparation of L-ala-L-ala-L-ala and L-ala-D-ala-L-ala. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. The beta-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. S-(1,1,2,2-Tetrafluoroethyl)-L-CySteine is an excellent aminotransferase and beta-lyase substrate of rhGTK. Moderate aminotransferase and beta-lyase activities occur with the chemopreventive agent Se-methyl-L-selenocysteine. L-3-(2-Naphthyl)alanine, L-3-(1-naphthyl)alanine, 5-S-L-cysteinyldopamine and 5-S-L-cysteinyl-L-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The alpha-keto acids generated by transamination/L-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed beta-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-L-CysteinyIdopamine, but not with 5-S-L-CySteinyl-L-DOPA. The importance of transamination, oxidation and beta-elimination reactions involving 5-S-L-cysteinyldopamine, 5-S-L-cysteinyt-L-DOPA and Se-methyl-L-selenocysteirte in human tissues and their biological relevance are discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The new trinuclear gadolinium complex [Gd(3)L(2)(NO(3))(2)(H(2)O)(4)]NO(3)center dot 8H(2)O (1) with the unsymmetrical ligand 2-[N-bis-(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-bis(2-hydroxy-2-oxoethyl)aminomethyl] phenol (H(3)L) was synthesized and characterized. The new ligand H(3)L was obtained in good yield. Complex I crystallizes in an orthorhombic cell, space group Pcab. Kinetic studies show that complex 1 is highly active in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate (K(m) = 4.09 mM, V(max) = 2.68 x 10(-2) mM s(-1), and k(cat) = V(max)/[1] = 0.67 s(-1)). Through a potentiometric study and determination of the kinetic behavior of 1 in acetonitrile/water solution, the species present in solution could be identified, and a trinuclear monohydroxo species appears to be the most prominent catalyst under mild conditions. Complex 1 displays high efficiency in DNA hydrolytic cleavage, and complete kinetic studies were carried out (K(m) = 4.57 x 10(-4) M, K(cat)` = 3.42 h(-1), and k(cat)`/K(m) = 7.48 x 10(3) M(-1) h(-1)). Studies with a radical scavenger (dimethyl sulfoxide, DMSO) showed that it did not inhibit the activity, indicating the hydrolytic action of 1 in the cleavage of DNA, and studies on the incubation of distamycin with plasmid DNA suggest that 1 is regio-specific, interacting with the minor groove of DNA.
Resumo:
Biomateriais poliméricos são desenvolvidos para uso como substitutos de tecidos danificados e/ou estimular sua regeneração. Uma classe de biomateriais poliméricos são os biorreabsorvíveis, compostos que se decompõem tanto in vitro quanto in vivo. São empregados em tecidos que necessitam de um suporte temporário para sua recomposição tecidual. Dentre os vários polímeros biorreabsorvíveis, destacam-se os alfa-hidróxi ácidos, entre eles, diferentes composições do poli(ácido lático) (PLA), como o poli(L-ácido lático) (PLLA), poli(D-ácido lático) (PDLA), poli(DL-ácido lático) (PDLLA), além do poli(ácido glicólico) (PGA) e da policaprolactona (PCL). Estes polímeros são considerados biorreabsorvíveis por apresentarem boa biocompatibilidade e os produtos de sua decomposição serem eliminados do corpo por vias metabólicas. Diversas linhas de pesquisa mostram que os diferentes substratos à base de PLA estudados não apresentam toxicidade, uma vez que as células são capazes de crescer e proliferar sobre eles. Além disso, diversos tipos de células cultivadas sobre diferentes formas de PLA são capazes de se diferenciarem sobre os diferentes polímeros e passar a produzir componentes de matriz extracelular. Neste trabalho, é revisada a utilização de substratos à base de alfa-hidróxi ácidos, com destaque para diferentes formas de PLA, utilizados como substratos para cultura de células, bem como suas aplicações.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The concept behind a biodegradable ligament device is to temporarily replace the biomechanical functions of the ruptured ligament, while it progressively regenerates its capacities. However, there is a lack of methods to predict the mechanical behaviour evolution of the biodegradable devices during degradation, which is an important aspect of the project. In this work, a hyper elastic constitutive model will be used to predict the mechanical behaviour of a biodegradable rope made of aliphatic polyesters. A numerical approach using ABAQUS is presented, where the material parameters of the model proposal are automatically updated in correspondence to the degradation time, by means of a script in PYTHON. In this method we also use a User Material subroutine (UMAT) to apply a failure criterion base on the strength that decreases according to a first order differential equation. The parameterization of the material model proposal for different degradation times were achieved by fitting the theoretical curves with the experimental data of tensile tests on fibres. To model all the rope behaviour we had considered one step of homogenisation considering the fibres architectures in an elementary volume. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The chemiluminescence of cyclic peroxides activated by oxidizable fluorescent dyes is an example of chemically initiated electron exchange luminescence (CIEEL), which has been used also to explain the efficient bioluminescence of fireflies. Diphenoyl peroxide and dimethyl-1,2-dioxetanone were used as model compounds for the development of this CIEEL mechanism. However, the chemiexcitation efficiency of diphenoyl peroxide was found to be much lower than originally described. In this work, we redetermine the chemiexcitation quantum efficiency of dimethyl-1,2-dioxetanone, a more adequate model for firefly bioluminescence, and found a singlet quantum yield (Phi(s)) of 0.1%, a value at least 2 orders of magnitude lower than previously reported. Furthermore, we synthesized two other 1,2-dioxetanone derivatives and confirm the low chemiexcitation efficiency (Phi(s) < 0.1%) of the intermolecular CIEEL-activated decomposition of this class of cyclic. peroxides. These results are compared with other chemiluminescent reactions, supporting the general trend that intermolecular CIEEL systems are much less efficient in generating singlet excited states than analogous intramolecular processes (Phi(s) approximate to 50%), with the notable exception of the peroxyoxalate reaction (Phi(s) approximate to 60%).
Resumo:
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, alpha-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.
Resumo:
Small molecules that bind their biological receptors with high affinity and selectivity can be isolated from randomized pools of combinatorial libraries. RNA-protein interactions are important in many cellular functions, including transcription, RNA splicing, and translation. One example of such interactions is the mechanism of trans-activation of HIV-1 gene expression that requires the interaction of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5′ end of all nascent HIV-1 transcripts. Here we demonstrate the isolation of small TAR RNA-binding molecules from an encoded combinatorial library. We have made an encoded combinatorial tripeptide library of 24,389 possible members from d-and l-alpha amino acids on TentaGel resin. Using on-bead screening we have identified a small family of mostly heterochiral tripeptides capable of structure-specific binding to the bulge loop of TAR RNA. In vitro binding studies reveal stereospecific discrimination when the best tripeptide ligand is compared with diastereomeric peptide sequences. In addition, the most strongly binding tripeptide was shown to suppress transcriptional activation by Tat protein in human cells with an IC50 of ≈50 nM. Our results indicate that tripeptide RNA ligands are cell permeable, nontoxic to cells, and capable of inhibiting expression of specific genes by interfering with RNA-protein interactions.
Resumo:
D-amino acid oxidase is the prototype of the FAD-dependent oxidases. It catalyses the oxidation of D-amino acids to the corresponding alpha-ketoacids. The reducing equivalents are transferred to molecular oxygen with production of hydrogen peroxide. We have solved the crystal structure of the complex of D-amino acid oxidase with benzoate, a competitive inhibitor of the substrate, by single isomorphous replacement and eightfold averaging. Each monomer is formed by two domains with an overall topology similar to that of p-hydroxybenzoate hydroxylase. The benzoate molecule lays parallel to the flavin ring and is held in position by a salt bridge with Arg-283. Analysis of the active site shows that no side chains are properly positioned to act as the postulated base required for the catalytic carboanion mechanism. On the contrary, the benzoate binding mode suggests a direct transfer of the substrate alpha-hydrogen to the flavin during the enzyme reductive half-reaction.The active site Of D-amino acid oxidase exhibits a striking similarity with that of flavocytochrome b2, a structurally unrelated FMN-dependent flavoenzyme. The active site groups (if these two enzymes are in fact superimposable once the mirror-image of the flavocytochrome b2 active site is generated with respect to the flavin plane. Therefore, the catalytic sites of D-amino acid oxidase and flavocytochrome b2 appear to have converged to a highly similar but enantiomeric architecture in order to catalvze similar reactions (oxidation of alpha-amino acids or alpha-hydroxy acids), although with opposite stereochemistry.