972 resultados para alpha 2A adrenergic receptor
Resumo:
The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 mu l, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1 +/- 5.5 ml/2 h vs. vehicle: 1.8 +/- 0.6 ml/2 h), without changing water intake (15.8 +/- 3.0 ml/2 h vs. vehicle: 9.3 +/- 2.0 ml/2 h). However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 mu l) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7 +/- 3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: To measure maximum binding capacity (B(max)) and levels of mRNA expression for alpha(2)-adrenergic receptor (AR) subtypes in ileal and colonic muscle layers of healthy dairy cows. SAMPLE POPULATION: Ileal and colonic muscle specimens from 6 freshly slaughtered cows. PROCEDURES: Ileal and colonic muscle layers were obtained by scraping the mucosa and submucosa from full-thickness tissue specimens. Level of mRNA expression for alpha(2)-AR subtypes was measured by real-time reverse transcriptase-PCR analysis and expressed relative to the mean mRNA expression of glyceraldehyde phosphate dehydrogenase, ubiquitin, and 18S ribosomal RNA. Binding studies were performed with tritiated RX821002 ((3)H-RX821002) and subtype-selective ligands as competitors. RESULTS: mRNA expression for alpha(2AD)-, alpha(2B)-, and alpha(2C)-AR subtypes was similar in ileal and colonic muscle layers. The mRNA expression for alpha(2AD)-AR was significantly greater than that for alpha(2B)- and alpha(2C)-AR subtypes, representing 92%, 6%, and 2%, respectively, of the total mRNA. Binding competition of (3)H-RX821002 with BRL44408, imiloxan, and MK-912 was best fitted by a 1-site model. The B(max) of alpha(2AD)- and alpha(2C)-AR sub-types was greater than that of alpha(2B)-AR. The B(max) and level of mRNA expression were only correlated (r = 0.8) for alpha(2AD)-AR. Ratio of B(max) to mRNA expression for alpha(2C)-AR was similar to that for alpha(2B)-AR, but significantly greater than for alpha(2AD)-AR. CONCLUSIONS AND CLINICAL RELEVANCE: Subtypes of alpha(2)-AR in bovine intestinal muscle layers are represented by a mixture of alpha(2AD)- and alpha(2C)-ARs and of alpha(2B)-AR at a lower density. Information provided here may help in clarification of the role of AR subtypes in alpha(2)-adrenergic mechanisms regulating bovine intestinal motility.
Resumo:
The effects of clonidine on sodium and potassium excretions were examined after previous administration of prazosin (an α 1-adrenergic receptor antagonist) and yohimbine (an α 2-adrenergic receptor antagonist) into the ventromedial nucleus of the hypothalamus of conscious rats. Clonidine injected into the ventromedial nucleus of the hypothalamus induced inhibitory and facilitatory effects on the urinary sodium and potassium excretions. The results suggest that facilitatory effects of clonidine on natriuresis and kaliuresis are mediated through activation of α 1-adrenoceptors and that inhibitory effects require α(2A)-adrenoceptors.
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Resumo:
AIM: Alpha1-adrenergic receptors (alpha1-ARs) are classified into three subtypes: alpha1A-AR, alpha1B-AR, and alpha1D-AR. Triple disruption of alpha1A-AR, alpha1B-AR, and alpha1D-AR genes results in hypotension and produces no contractile response of the thoracic aorta to noradrenalin. Presently, we characterized vascular contractility against other vasoconstrictors, such as potassium, prostaglandin F2alpha (PGF(2alpha)) and 5-hydroxytryptamine (5-HT), in alpha1A-AR, alpha1B-AR, and alpha1D-AR triple knockout (alpha1-AR triple KO) mice. MAIN METHODS: The contractile responses to the stimulation with vasoconstrictors were studied using isolated thoracic aorta. KEY FINDINGS: As a result, the phasic and tonic contraction induced by a high concentration of potassium (20 mM) was enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with that of wild-type (WT) mice. In addition, vascular responses to PGF(2alpha) and 5-HT were also enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with WT mice. Similar to in vitro findings with isolated thoracic aorta, in vivo pressor responses to PGF(2alpha) were enhanced in alpha1-AR triple KO mice. Real-time reverse transcription-polymerase chain reaction analysis and western blot analysis indicate that gene expression of the 5-hydroxytryptamine 2A (5-HT(2A)) receptor was up-regulated in the thoracic aorta of alpha1-AR triple KO mice while the prostaglandin F2alpha receptor (FP) was unchanged. SIGNIFICANCE: These results suggest that loss of alpha1-ARs can lead to enhancement of vascular responsiveness to the vasoconstrictors and may imply that alpha1-ARs and the subsequent signaling regulate the vascular responsiveness to other stimulations such as depolarization, 5-HT and PGF(2alpha).
Resumo:
Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.
Resumo:
Background: The alpha1A-adrenergic receptor (alpha(1A)-AR) regulates the cardiac and peripheral vascular system through sympathetic activation. Due to its important role in the regulation of vascular tone and blood pressure, we aimed to investigate the association between the Arg347Cys polymorphism in the alpha(1A)-AR gene and blood pressure phenotypes, in a large sample of Brazilians from an urban population. Methods: A total of 1568 individuals were randomly selected from the general population of the Vitoria City metropolitan area. Genetic analysis of the Arg347Cys polymorphism was conducted by polymerase chain reaction/restriction fragment length polymorphism. We have compared cardiovascular risk variables and genotypes using ANOVA, and Chi-square test for univariate comparisons and logistic regression for multivariate comparisons. Results: Association analysis indicated a significant difference between genotype groups with respect to diastolic blood pressure (p = 0.04), but not systolic blood pressure (p = 0.12). In addition, presence of the Cys/Cys genotype was marginally associated with hypertension in our population (p = 0.06). Significant interaction effects were observed between the studied genetic variant, age and physical activity. Presence of the Cys/Cys genotype was associated with hypertension only in individuals with regular physical activity (odds ratio = 1.86; p = 0.03) or younger than 45 years (odds ratio = 1.27; p = 0.04). Conclusion: Physical activity and age may potentially play a role by disclosing the effects of the Cys allele on blood pressure. According to our data it is possible that the Arg347Cys polymorphism can be used as a biomarker to disease risk in a selected group of individuals.
Resumo:
It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.
Resumo:
To assess the role of the alpha1b-adrenergic receptor (AR) in glucose homeostasis, we investigated glucose metabolism in knockout mice deficient of this receptor subtype (alpha1b-AR-/-). Mutant mice had normal blood glucose and insulin levels, but elevated leptin concentrations in the fed state. During the transition to fasting, glucose and insulin blood concentrations remained markedly elevated for at least 6 h and returned to control levels after 24 h whereas leptin levels remained high at all times. Hyperinsulinemia in the post-absorptive phase was normalized by atropine or methylatropine indicating an elevated parasympathetic activity on the pancreatic beta cells, which was associated with increased levels of hypothalamic NPY mRNA. Euglycemic clamps at both low and high insulin infusion rates revealed whole body insulin resistance with reduced muscle glycogen synthesis and impaired suppression of endogenous glucose production at the low insulin infusion rate. The liver glycogen stores were 2-fold higher in the fed state in the alpha1b-AR-/- compared with control mice, but were mobilized at the same rate during the fed to fast transition or following glucagon injections. Finally, high fat feeding for one month increased glucose intolerance and body weight in the alpha1b-AR-/-, but not in control mice. Altogether, our results indicate that in the absence of the alpha1b-AR the expression of hypotalamic NPY and the parasympathetic nervous activity are both increased resulting in hyperinsulinemia and insulin resistance as well as favoring obesity and glucose intolerance development during high fat feeding.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
Site-directed mutagenesis and molecular dynamics analysis of the 3-D model of the alpha1B-adrenergic receptor (AR) were combined to identify the molecular determinants of the receptor involved in catecholamine binding. Our results indicate that the three conserved serines in the fifth transmembrane domain (TMD) of the alpha1B-AR play a distinct role in catecholamine binding versus receptor activation. In addition to the amino acids D125 in TMDIII and S207 in TMDV directly involved in ligand binding, our findings identify a large number of polar residues playing an important role in the activation process of the alpha1B-AR thus providing new insights into the structure/function relationship of G protein-coupled receptors.
Resumo:
To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.
Resumo:
Attenuation of early restenosis after percutaneous coronary intervention (PCI) is important for the successful treatment of coronary artery disease. Some clinical studies have shown that hypertension is a risk factor for early restenosis after PCI. These findings suggest that alpha(1)-adrenergic receptors (alpha(1)-ARs) may facilitate restenosis after PCI because of alpha(1)-AR's remarkable contribution to the onset of hypertension. In this study, we examined the neointimal formation after vascular injury in the femoral artery of alpha(1A)-knockout (alpha(1A)-KO), alpha(1B)-KO, alpha(1D)-KO, alpha(1A)-/alpha(1B)-AR double-KO (alpha(1AB)-KO), and wild-type mice to investigate the functional role of each alpha(1)-AR subtype in neointimal formation, which is known to promote restenosis. Neointimal formation 4 wk after wire injury was significantly (P < 0.05) smaller in alpha(1AB)-KO mice than in any other group of mice, while blood pressures were not altered in any of the groups of mice after wire injury compared with those before it. These results suggest that lack of both alpha(1A)- and alpha(1B)-ARs could be necessary to inhibit neointimal formation in the mouse femoral artery.
Resumo:
The internalization properties of the alpha1a- and alpha1b-adrenergic receptors (ARs) subtypes transiently expressed in human embryonic kidney (HEK) 293 cells were compared using biotinylation experiments and confocal microscopy. Whereas the alpha1b-AR displayed robust agonist-induced endocytosis, the alpha1a-AR did not. Constitutive internalization of the alpha1a-AR was negligible, whereas the alpha1b-AR displayed significant constitutive internalization and recycling. We investigated the interaction of the alpha1-AR subtypes with beta-arrestins 1 and 2 as well as with the AP50 subunit of the clathrin adaptor complex AP2. The results from both coimmunoprecipitation experiments and beta-arrestin translocation assays indicated that the agonistinduced interaction of the alpha1a-AR with beta-arrestins was much weaker than that of the alpha1b-AR. In addition, the alpha1a-AR did not bind AP50. The alpha1b-AR mutant M8, lacking the main phosphorylation sites in the receptor C tail, was unable to undergo endocytosis and was profoundly impaired in binding beta-arrestins despite its binding to AP50. In contrast, the alpha1b-AR mutant DeltaR8, lacking AP50 binding, bound beta-arrestins efficiently, and displayed delayed endocytosis. RNA interference showed that beta-arrestin 2 plays a prominent role in alpha1b-AR endocytosis. The findings of this study demonstrate differences in internalization between the alpha1a- and alpha1b-AR and provide evidence that the lack of significant endocytosis of the alpha1a-AR is linked to its poor interaction with beta-arrestins as well as with AP50. We also provide evidence that the integrity of the phosphorylation sites in the C tail of the alpha1b-AR is important for receptor/beta-arrestin interaction and that this interaction is the main event triggering receptor internalization.