45 resultados para allopurinol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maculopapular (exanthematous) reactions are the most common adverse drug eruptions affecting the skin. Several studies indicate that immunological mechanisms including cytotoxic T cells (CD4+ > CD8+), both type 1 (e.g. IFN- γ ) and type 2 (e.g. IL-5) cytokines and various chemokines are critically involved in the pathogenesis of these eruptions. While maculopapular exanthems can virtually be elicited by any drug, antimicrobials (e.g. Β -lactam antibiotic, sulfonamides), anticonvulsants, allopurinol, and NSAIDs are most frequently involved. Clinical manifestations are variable and range from faint macules to widespread erythematous and maculopapular lesions, which usually begin on the trunk, neck and upper extremities and subsequently spread downwards in a symmetrical fashion. Although the clinical course is often relatively mild, these exanthems may sometimes progress to erythroderma or represent the beginning of even more severe drug reactions like Stevens-Johnson syndrome, toxic epidermal necrolysis or a drug rash with eosinophilia and systemic symptoms. In most cases, management includes early withdrawal of the offending drug and usually supportive treatment with emollients, topical corticosteroids and systemic antihistamines depending on the severity of the eruption. Allergological work-up is recommended to provide the patient with appropriate information about the causative drug and possible alternatives for future use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allopurinol (ALP) hypersensitivity is a major cause of severe cutaneous adverse reactions and is strongly associated with the HLA-B*58:01 allele. However, it can occur in the absence of this allele with identical clinical manifestations. The immune mechanism of ALP-induced severe cutaneous adverse reactions is poorly understood, and the T cell-reactivity pattern in patients with or without the HLA-B*58:01 allele is not known. To understand the interactions among the drug, HLA, and TCR, we generated T cell lines that react to ALP or its metabolite oxypurinol (OXP) from HLA-B*58:01(+) and HLA-B*58:01(-) donors and assessed their reactivity. ALP/OXP-specific T cells reacted immediately to the addition of the drugs and bypassed intracellular Ag processing, which is consistent with the "pharmacological interaction with immune receptors" (p-i) concept. This direct activation occurred regardless of HLA-B*58:01 status. Although most OXP-specific T cells from HLA-B*58:01(+) donors were restricted by the HLA-B*58:01 molecule for drug recognition, ALP-specific T cells also were restricted to other MHC class I molecules. This can be explained by in silico docking data that suggest that OXP binds to the peptide-binding groove of HLA-B*58:01 with higher affinity. The ensuing T cell responses elicited by ALP or OXP were not limited to particular TCR Vβ repertoires. We conclude that the drug-specific T cells are activated by OXP bound to HLA-B*58:01 through the p-i mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the analysis of 15 pharmaceutical compounds, belonging to different therapeutic classes (anti-inflammatory/analgesics, lipid regulators, antiepileptics, ?-blockers and antidepressants) and with diverse physical?chemical properties, in Spanish soils with different farmland uses. The studied compounds were extracted from soil by ultrasound-assisted extraction (UAE) and determined, after derivatization, by gas chromatography with mass spectrometric detection (GC?MS). The limits of detection (LODs) ranged from 0.14 ng g?1 (naproxen) to 0.65 ng g?1 (amitriptyline). At least two compounds where detected in all samples, being ibuprofen, salicylic acid, and paracetamol, the most frequently detected compounds. The highest levels found in soil were 47 ng g?1 for allopurinol and 37 ng g?1 for salicylic acid. The influence of the type of crop and the sampling area on the levels of pharmaceuticals in soil, as well as their relationship with soil physical?chemical properties, was studied. The frequent and widespread detection of some of these compounds in agricultural soils show a diffuse contamination, although the low levels found do not pose a risk to the environment or the human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3-Hydroxykynurenine (3-HK) is a tryptophan metabolite whose level in the brain is markedly elevated under several pathological conditions, including Huntington disease and human immunodeficiency virus infection. Here we demonstrate that micromolar concentrations (1-100 microM) of 3-HK cause cell death in primary neuronal cultures prepared from rat striatum. The neurotoxicity of 3-HK was blocked by catalase and desferrioxamine but not by superoxide dismutase, indicating that the generation of hydrogen peroxide and hydroxyl radical is involved in the toxicity. Measurement of peroxide levels revealed that 3-HK caused intracellular accumulation of peroxide, which was largely attenuated by application of catalase. The peroxide accumulation and cell death caused by 1-10 microM 3-HK were also blocked by pretreatment with allopurinol or oxypurinol, suggesting that endogenous xanthine oxidase activity is involved in exacerbation of 3-HK neurotoxicity. Furthermore, NADPH diaphorase-containing neurons were spared from toxicity of these concentrations of 3-HK, a finding reminiscent of the pathological characteristics of several neurodegenerative disorders such as Huntington disease. These results suggest that 3-HK at pathologically relevant concentrations renders neuronal cells subject to oxidative stress leading to cell death, and therefore that this endogenous compound should be regarded as an important factor in pathogenesis of neurodegenerative disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species play a central role in vascular inflammation and atherogenesis, with enhanced superoxide (O2.-) production contributing significantly to impairment of nitric oxide (.NO)-dependent relaxation of vessels from cholesterol-fed rabbits. We investigated potential sources of O2.- production, which contribute to this loss of endothelium-dependent vascular responses. The vasorelaxation elicited by acetylcholine (ACh) in phenylephrine-contracted, aortic ring segments was impaired by cholesterol feeding. Pretreatment of aortic vessels with either heparin, which competes with xanthine oxidase (XO) for binding to sulfated glycosaminoglycans, or the XO inhibitor allopurinol resulted in a partial restoration (36-40% at 1 muM ACh) of ACh-dependent relaxation. Furthermore, O2.(-)-dependent lucigenin chemiluminescence, measured in intact ring segments from hypercholesterolemic rabbits, was decreased by addition of heparin, allopurinol or a chimeric, heparin-binding superoxide dismutase. XO activity was elevated more than two-fold in plasma of hypercholesterolemic rabbits. Incubation of vascular rings from rabbits on a normal diet with purified XO (10 milliunits/ml) also impaired .NO-dependent relaxation but only in the presence of purine substrate. As with vessels from hypercholesterolemic rabbits, this effect was prevented by heparin and allopurinol treatment. We hypothesize that increases in plasma cholesterol induce the release of XO into the circulation, where it binds to endothelial cell glycosaminoglycans. Only in hypercholesterolemic vessels is sufficient substrate available to sustain the production of O2.- and impair NO-dependent vasorelaxation. Chronically, the continued production of peroxynitrite, (ONOO-) which the simultaneous generation of NO and O2.- implies, may irreversibly impair vessel function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8) is associated with a spectrum of disease that ranges from gouty arthritis (OMIM 300323) to the more severe Lesch-Nyhan syndrome (OMIM 300322). To date, all cases of HPRT deficiency have shown a mutation within the HPRT cDNA. In the present study of an individual with gout due to HPRT deficiency, we found a normal HPRT cDNA sequence. This is the first study to provide an example of HPRT deficiency which appears to be due to a defect in the regulation of the gene. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex molybdoenzyme xanthine oxidase (XO) catalyses the oxidation of xanthine to uric acid. Here we report the first direct (unmediated) catalytic electrochemistry of the enzyme in the presence of xanthine. The only non-turnover response (without substrate present) is a sharp two-electron wave from the FAD cofactor at -242 mV vs. NHE (pH 8.0). Upon addition of xanthine to the electrochemical cell a pronounced electrocatalytic anodic current appears at ca. +300 mV vs. NHE, but the FAD peak remains. This is unusual as the onset of catalysis should occur at the potential of the FAD cofactor (the site at which oxygen or NAD+ binds to the enzyme in solution). The observed electrochemical catalysis is prevented by the addition of known XO inhibitors allopurinol or cyanide. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K-m values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50-80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC50 values as low as 1 mu M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inadequate blood flow to an organ, ischaemia, may lead to both local and remote tissue injury characterized by oedema, increased microvascular permeability to protein and degradation of connective tissue components. This damage is probably caused by the accumulation and inappropriate activation of neutrophils which occurs when the tissue is reperfused. To test this hypothesis a number of in vitro models of the sequential stages of ischaemia/reperfusion injury were examined. Methods were initially developed to examine the adhesion of neutrophils to monolayers of a cultured endothelial cell line (ECV304) after periods of hypoxia and reoxygenation. Neutrophil migration in response to factors secreted by the treated endothelial cells was then assessed. The genesis of an inappropriate oxidative burst by the neutrophil upon exposure to endothelial chemoattractants and adhesion molecules was also measured. Finally to appraise how tissue function might be affected by endothelial cell hypoxia the contractility of vascular smooth muscle was examined. Neutrophil adhesion to ECV304 cells, which had been hypoxic for 4 hours and then reoxygenated for 30 minutes, was significantly increased. This response was probably initiated by reactive oxygen species (ROS) generated by the endothelial cells. Blockage of their production by allopurinol reduced the heightened adhesion. Similarly removal of ROS by superoxide dismutase or catalase also attenuated adhesion. ROS generation in turn caused the release of a soluble factor (s) which induced a conformational change on the neutrophil surface allowing it to bind to the intercellular adhesion molecule 1 (ICAM-1) on the endothelial cell. Soluble factor (s) from hypoxia/reoxygenated endothelial cells also had a powerful neutrophil chemoattractant ability. When neutrophils were exposed to both hypoxic/reoxygenated endothelial cells and the soluble factor (s) released by them a large oxidative burst was elicited. This response was greatest immediately after reoxygenation and one hour later was diminishing suggesting at least one of the components involved was labile. Analysis of the supernatant from hypoxic/reoxygenated endothelial cell cultures and studies using inhibitors of secretion suggested platelet activating factor (PAF) may be a major component in this overall sequence of events. Lesser roles for IL-8, TNF and LTB4 were also suggested. The secretory products from hypoxia/reoxygenated endothelial cells also affected smooth muscle contractility having an anti-vasoconstrictor or relaxation property, similar to that exerted by PAF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the introduction a brief outline of the possible mechanisms involved in the process of cellular necrosis with particular emphasis on skeletal muscle necrosis after antiChE is discussed. Ecothiopate (ECO), an antiChE, was shown to produce dose-dependent inhibition of both AChE and BuChE in diaphragm and blood of mice. Inhibition of AChE resulted in dose-dependent influx of calcium at the junctional region with the consequent development of morphological and biochemical alterations. Non-necrotising doses of ECO caused hypercontractions of varying severity, distorted end plate and slight elevation of serum creatine kinase (CK). Necrotising doses of ECO further caused contraction clumps, loss of striations and procion staining with high serum CK. The extent of ECO-induced myopathy depended on entry of extracellular calcium rather than the degree of AChE inhibition. The essential Ca2+ mediated process(es) in ECO-induced myopathy was thought to be the generation of superoxide and superoxide-derived free radicals and/or lipid peroxidation. Mitochondria and xanthine oxidase may be the major contributors to the generation of superoxide. No evidence was found for the depletion of high energy phosphates. ECO-induced myopathy could be successfully prevented by prior administration of pyridostigmine or various antioxidants, the most effective being Vit E or Vit E + N-acetylcysteine. Allopurinol or N-acetylcysteine alone were also effective. However, the use of a wide range of membrane end plate channel blockers or non-quantal release blockers were unsuccessful in the prevention of ECO-induced myopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of a mixture of [2-14C] and [3',5',7,9-3H] folic acid was studied in female weanling rats. Intact folates and folate catabolites were excreted in the urine. Folate polyglutamates were found in the tissues. Rats treated with the oestrogen diethylstilbestrol and 17 -ethynyloestradiol exhibited marked changes in the metabolic handling of folic acid and folate catabolism was greatly increased compared to controls. Allopurinol treatment gave greater label retention in the gut, with a substantial increase in catabolism compared to normals. A dose response relationship was illustrated between allopurinol dose and folate catabolism. After lead acetate dosing there was little radioactivity in the urine and tissues over 72h and more radioactivity was retained in the faeces compared to normals. Excretion of intact folates was depressed, especially 5MeTHF and 10CHOTHF. A tenfold increase in both lead and folic acid dosage resulted in an even further decrease of radioactivity in the tissues and urine over 72h. Excretion in the faeces was further elevated. Ferrous sulphate administration resulted in increased catabolism. The retention of radioactivity in the liver, kidney and gut was greatly reduced. A new method of folate analysis; Sephadex LH-20 was introduced. In vitro superoxide anion formation was illustrated using an allopurinol/xanthine oxidase system. Histological studies were employed to qualitatively and quantitatively illustrate the oxidative status in livers and brains of allopurinol and ferrous sulphate dosed rats. Increased dose related formazan deposition was observed when livers of pretreated animals were incubated with nitroblue tetrazolium. Formazan deposition was reduced in pretreated animals also treated with the anti-oxidants vitamin E, mannitol or 4-hydroxy-methyl-4,6-ditertiary-butylphenol. A possible route of folate catabolism is scission by a non-enzymic oxidation involving active oxygen species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the anti-hyperuricemic effect of Dioscorea tokoro Makino extract (DTME) in potassium oxonate-induced hyperuricemic mice. Method: The effect of DTME was investigated in the hyperuricemic mice induced by potassium oxonate. DTME. The extract was administered to the mice daily at doses of 220, 440 and 880 mg/kg for 10 days; allopurinol (5 mg/kg) was given as positive control. Serum and urine levels of uric acid and creatinine were determined by colorimetric method. Simultaneously, protein levels of urate transporter 1 (URAT1) and organic anion transporter 1 (OAT1) in the rat kidney were analyzed by Western blotting. Results: Compared with control, a high dose of DTME inhibited xanthine oxidase (XOD) activity in both serum (18.12 ± 1.33 U/L) and in liver (70.15 ± 5.20 U/g protein) (p < 0.05); decreased levels of serum uric acid (2.04 ± 0.64 mg/L) (p < 0.05), serum creatinine (0.35 ± 0.18 μmol/L) and blood urea nitrogen (BUN) (8.83 ± 0.71 mmol/L) (p < 0.05). Furthermore, the extract increased levels of urine uric acid (38.34 ± 8.23 mg/L), urine creatinine (34.38 ± 1.98 mmol/L), down regulated of URAT1 and up regulated of OAT1 protein expressions (p < 0.05) in the renal tissue of hyperuricemic mice. Conclusion: DTME improves renal dysfunction in rats by regulating renal urate transporters in hyperuricemic rats. This may find therapeutic application in antihypertensive therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La asfixia perinatal es la principal causa de muerte en la primera semana de vida la nivel mundial, los niños que sufren esta complicación y sobreviven pueden presentar trastornos neurológicos de diferente nivel de compromiso que inciden en su desarrollo personal y social. Las cifras de muerte por este problema de salud han disminuido de manera importante, sin embargo en el reporte de la Organización Mundial de Salud (OPS) del 2010, la asfixia perinatal es causa del 29% de muertes infantiles en los países de América Latina y el Caribe 2. Es necesario conocer además la extensión del daño neurológico que sufren estos niños, con este fin se desarrolló un estudio piloto en el Hospital Universitario Mayor Mederi de Bogotá, en el cual se determinó la concentración de un marcador metabólico de daño cerebral, la proteína S100B en suero de 60 recién nacidos sanos, con el objetivo de analizar la asociación del mismo con el peso al nacer, la edad gestacional y el diagnóstico. Los resultados no mostraron diferencias significativas entre este marcador y las variables analizadas que puede asociarse al pequeño número de pacientes, sin embargo han sentado las bases para el desarrollo de un estudio que incluya varios hospitales de Bogotá y sobre todo la determinación del mismo en recién nacidos con diagnóstico de hipoxia en el período perinatal, lo cual aportará información del grado de la alteración que puedan tener a nivel cerebral y contribuya al mejor manejo evolutivo con la aplicación de medidas de intervención en estadios tempranos de la vida.