917 resultados para allergic inflammation
Resumo:
P>Background To date, little information has been available about pulmonary artery pathology in asthma. The pulmonary artery supplies the distal parts of the lungs and likely represents a site of immunological reaction in allergic inflammation. The objective of this study was to describe the inflammatory cell phenotype of pulmonary artery adventitial inflammation in lung tissue from patients who died of asthma. Methods We quantified the different inflammatory cell types in the periarterial region of small pulmonary arteries in lung tissue from 22 patients who died of asthma [fatal asthma (FA)] and 10 control subjects. Using immunohistochemistry and image analysis, we quantified the cell density for T lymphocytes (CD3, CD4, CD8), B lymphocytes (CD20), eosinophils, mast cells (chymase and tryptase), and neutrophils in the adventitial layer of pulmonary arteries with a diameter smaller than 500 mu m. Results Our data (median/interquartile range) demonstrated increased cell density of mast cells [FA=271.8 (148.7) cells/mm
Resumo:
Aims: There has been emerging interest in the prenatal determinants of respiratory disease. In utero factors have been reported to play a role in airway development, inflammation, and remodeling. Specifically, prenatal exposure to endotoxins might regulate tolerance to allergens later in life. The present study investigated whether prenatal lipopolysaccharide (LPS) administration alters subsequent offspring allergen-induced inflammatory response in adult rats. Main methods: Pregnant Wistar rats were treated with LPS (100 mu g/kg, i.p.) on gestation day 9.5 and their ovariectomized female offspring were sensitized and challenged with OVA later in adulthood. The bronchoalveolar lavage (BAL) fluid, peripheral blood, bone marrow leukocytes and passive cutaneous anaphylaxis were evaluated in these 75-day-old pups. Key findings: OVA sensitized pups of NaCl treated rats showed an increase of leucocytes in BAL after OVA challenge. This increase was attenuated, when mothers were exposed to a single LPS injection early in pregnancy. Thus, LPS prenatal treatment resulted in (1) lower increased total and differential (macrophages, neutrophils, eosinophils and lymphocytes) BAL cellularity count; (2) increased number of total, mononuclear and polymorphonuclear cells in the peripheral blood; and (3) no differences in bone marrow cellularity or passive cutaneous anaphylaxis. Significance: In conclusion, female pups treated prenatally with LPS presented an attenuated response to experimentally-induced asthma. We observed reduced immune cell migration from peripheral blood to the lungs, with no effect on the production of bone marrow cells or antibodies. It was suggested that inflammatory events such as exposure to LPS in early fetal life can attenuate allergic inflammation in the lung, which is a common symptom in asthma. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Eosinophils play a central role in the establishment and outcome of bronchial inflammation in asthma. Animal models of allergy are useful to answer questions related to mechanisms of allergic inflammation. We have used models of sensitized and boosted guinea pigs to investigate the nature of bronchial inflammation in allergic conditions. These animals develop marked bronchial infiltration composed mainly of CD4+ T-lymphocytes and eosinophils. Further provocation with antigen leads to degranulation of eosinophils and ulceration of the bronchial mucosa. Eosinophils are the first cells to increase in numbers in the mucosa after antigen challenge and depend on the expression of alpha 4 integrin to adhere to the vascular endothelium and transmigrate to the mucosa. Blockage of alpha4 integrin expression with specific antibody prevents not only the transmigration of eosinophils but also the development of bronchial hyperresponsiveness (BHR) to agonists in sensitized and challenged animals, clearly suggesting a role for this cell type in this altered functional state. Moreover, introduction of antibody against Major Basic Protein into the airways also prevents the development of BHR in similar model. BHR can also be suppressed by the use of FK506, an immunosuppressor that reduces in almost 100% the infiltration of eosinophils into the bronchi of allergic animals. These data support the concept that eosinophil is the most important pro-inflammatory factor in bronchial inflammation associated with allergy.
Resumo:
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.
Resumo:
BACKGROUND: An understanding of the mechanisms responsible for the development and maintenance of allergic inflammation and their clinical implications is needed to develop specific and successful treatment for allergy. OBJECTIVES: To characterize in vitro T-cell responses to Der p 2, one of the major allergens of house dust mite (HDM), and investigate potential correlations between clinical and laboratory parameters. METHODS: Forty-two patients monosensitized to HDM and 10 age-matched, healthy children were studied. Dendritic cells pulsed with Der p 2 were used to stimulate autologous CD14(-) cells. Der p 2-specific T-cell activation markers, proliferation, and cytokine production profiles were examined. RESULTS: Der p 2-specific T-cell activation markers, proliferation, and T(H)2 cytokine production were significantly higher in HDM patients compared with healthy controls. Moreover, a significant correlation between proliferation and T(H)2 cytokine production was observed. Within the allergic group, skin reaction to HDM was significantly stronger in patients with a Der p 2-specific T-cell response. Levels of HDM-specific IgE directly correlated with interleukin 5 and interleukin 13 levels and with skin prick test results and, ultimately, with the patient's family history of allergy. Furthermore, the presence of atopic march correlated with T-cell proliferation. CONCLUSION: We found that, in HDM patients, Der p 2-specific T(H)2 responses, promoted by autologous dendritic cells in vitro, correlate with clinical parameters.
Resumo:
Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.
Resumo:
Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.
Resumo:
Réalisé en cotutelle avec le Dr James G Martin de l'Université McGill (Meakins-Christie laboratories)
Resumo:
Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.
Resumo:
Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Background/Aims: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. Methods: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. Results: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. Conclusions: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Apoptosis, the most common form of cell death, is a key mechanism in the build up and maintenance of both innate and adaptive immunity. Central to the apoptotic process is a family of intracellular cysteine proteases with aspartate-specificity, called caspases. Caspases are counter-regulated by multiple anti-apoptotic molecules, and the expression of the latter in leukocytes is largely dependent on survival factors. Therefore, the physiologic rates of apoptosis change under pathologic conditions. For instance, in inflammation, the expression of survival factors is usually elevated, resulting in increased cell survival and consequently in the accumulation of the involved immune cells. In many allergic diseases, eosinophil apoptosis is delayed contributing to both blood and tissue eosinophilia. Besides eosinophils, apoptosis of other leukocytes is also frequently prevented or delayed during allergic inflammatory processes. In contrast to inflammatory cells, accelerated cell death is often observed in epithelial cells, a mechanism, which amplifies or at least maintains allergic inflammation. In conclusion, deregulated cell death is a common phenomenon of allergic diseases that likely plays an important role in their pathogenesis. Whether the apoptosis is too little or too much depends on the cell type. In this review, we discuss the regulation of the lifespan of the participating leukocytes in allergic inflammatory responses.