906 resultados para algoritmos evolucionários
Resumo:
Por parte da indústria de estampagem tem-se verificado um interesse crescente em simulações numéricas de processos de conformação de chapa, incluindo também métodos de engenharia inversa. Este facto ocorre principalmente porque as técnicas de tentativa-erro, muito usadas no passado, não são mais competitivas a nível económico. O uso de códigos de simulação é, atualmente, uma prática corrente em ambiente industrial, pois os resultados tipicamente obtidos através de códigos com base no Método dos Elementos Finitos (MEF) são bem aceites pelas comunidades industriais e científicas Na tentativa de obter campos de tensão e de deformação precisos, uma análise eficiente com o MEF necessita de dados de entrada corretos, como geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser considerados os problemas inversos. No trabalho apresentado, os seguintes problemas inversos, em Mecânica computacional, são apresentados e analisados: (i) problemas de identificação de parâmetros, que se referem à determinação de parâmetros de entrada que serão posteriormente usados em modelos constitutivos nas simulações numéricas e (ii) problemas de definição geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção de uma determinada geometria após um processo de conformação. São introduzidas e implementadas novas estratégias de otimização, as quais conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo destas estratégias é tirar vantagem das potencialidades de cada algoritmo e melhorar a eficiência geral dos métodos clássicos de otimização, os quais são baseados em processos de apenas um estágio. Algoritmos determinísticos, algoritmos inspirados em processos evolucionários ou mesmo a combinação destes dois são usados nas estratégias propostas. Estratégias de cascata, paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias híbridas consistem na combinação de estratégias em cascata e paralelas. São apresentados e analisados dois métodos distintos para a avaliação da função objetivo em processos de identificação de parâmetros. Os métodos considerados são uma análise com um ponto único ou uma análise com elementos finitos. A avaliação com base num único ponto caracteriza uma quantidade infinitesimal de material sujeito a uma determinada história de deformação. Por outro lado, na análise através de elementos finitos, o modelo constitutivo é implementado e considerado para cada ponto de integração. Problemas inversos são apresentados e descritos, como por exemplo, a definição geométrica de chapas e ferramentas. Considerando o caso da otimização da forma inicial de uma chapa metálica a definição da forma inicial de uma chapa para a conformação de um elemento de cárter é considerado como problema em estudo. Ainda neste âmbito, um estudo sobre a influência da definição geométrica inicial da chapa no processo de otimização é efetuado. Este estudo é realizado considerando a formulação de NURBS na definição da face superior da chapa metálica, face cuja geometria será alterada durante o processo de conformação plástica. No caso dos processos de otimização de ferramentas, um processo de forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro perfeito após o forjamento, dois métodos distintos são considerados. No primeiro, a forma inicial do cilindro é otimizada e no outro a forma da ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar a superfície livre do cilindro são utilizados diferentes métodos. Para a definição da ferramenta são também utilizados diferentes parametrizações. As estratégias de otimização propostas neste trabalho resolvem eficientemente problemas de otimização para a indústria de conformação metálica.
Resumo:
A domótica é uma área com grande interesse e margem de exploração, que pretende alcançar a gestão automática e autónoma de recursos habitacionais, proporcionando um maior conforto aos utilizadores. Para além disso, cada vez mais se procuram incluir benefícios económicos e ambientais neste conceito, por forma a garantir um futuro sustentável. O aquecimento de água (por meios elétricos) é um dos fatores que mais contribui para o consumo de energia total de uma residência. Neste enquadramento surge o tema “algoritmos inteligentes de baixa complexidade”, com origem numa parceria entre o Departamento de Eletrónica, Telecomunicações e Informática (DETI) da Universidade de Aveiro e a Bosch Termotecnologia SA, que visa o desenvolvimento de algoritmos ditos “inteligentes”, isto é, com alguma capacidade de aprendizagem e funcionamento autónomo. Os algoritmos devem ser adaptados a unidades de processamento de 8 bits para equipar pequenos aparelhos domésticos, mais propriamente tanques de aquecimento elétrico de água. Uma porção do desafio está, por isso, relacionada com as restrições computacionais de microcontroladores de 8 bits. No caso específico deste trabalho, foi determinada a existência de sensores de temperatura da água no tanque como a única fonte de informação externa aos algoritmos, juntamente com parâmetros pré-definidos pelo utilizador que estabelecem os limiares de temperatura máxima e mínima da água. Partindo deste princípio, os algoritmos desenvolvidos baseiam-se no perfil de consumo de água quente, observado ao longo de cada semana, para tentar prever futuras tiragens de água e, consequentemente, agir de forma adequada, adiantando ou adiando o aquecimento da água do tanque. O objetivo é alcançar uma gestão vantajosa entre a economia de energia e o conforto do utilizador (água quente), isto sem que exista necessidade de intervenção direta por parte do utilizador final. A solução prevista inclui também o desenvolvimento de um simulador que permite observar, avaliar e comparar o desempenho dos algoritmos desenvolvidos.
Resumo:
A generalidade dos problemas de ordem prática no domínio do dimensionamento das estruturas incluem variáveis discretas. Os métodos matemáticos tradicionais apresentam dificuldades na procura dos óptimos globais em problemas não lineares discretos. Os algoritmos genéticos constituem uma heurística eficaz na optimização de sistemas estruturais que envolvem variáveis discretas e contínuas. No presente trabalho, descreve-se uma metodologia que visa a optimização da forma geométrica da secção, do dimensionamento e colocação das armaduras em vigas de betão armado, com recurso a algoritmos genéticos. Apresenta-se um exemplo de aplicação da metodologia proposta.
Resumo:
Tese de dout., Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2003
Resumo:
Esta dissertação tem por objectivo aplicar algoritmos evolutivos multiobjectivo a problemas de afectação de recursos, particulamente a problemas de geração de horários de exames e problemas de geração de horários de aulas em Universidades. Estes problemas são normalmente caracterizados pela existência de múltiplos objectivos conflituosos. Neste sentido, uma formalização multiobjectivo para estes problemas é apresentada, com base no conceito de metas e prioridades. Vários aspectos dos algoritmos evolutivos são propostos e analisados para esta classe de problemas, nomeadamente, métodos de selecção e tipo e parâmetros de operadores de mutação. A escolha da representação e dos operadores utilizados é feita tendo em conta a necessidade de não privilegiar demasiadamente certos objectivos em relação a outros ao nível dos mecanismos de exploração. São apresentados estudos comparativos entre os algoritmos propostos por meio de métodos de inferência estatística em problemas reais na Universidade do Algarve. O conceito de função de aproveitamento é utilizado para avaliação de algoritmos evolutivos multiobjectivo. Finalmente, a análise da evolução do custo das soluções encontradas ao longo do tempo de execução através de funções de aproveitamento é apresentada.
Resumo:
Relatório da Prática de Ensino Supervisionada, Ensino de Informática, Universidade de Lisboa, 2013
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Ramo de Manutenção e Produção
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica - Ramo de Energia
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Muitas vezes é necessário trabalhar com variáveis categóricas, porem há um número restrito de análisesque as abordam. Uma boa técnica de segmentação é a grade of membership (GoM), muito utilizada na área médica, em psicologia e em sociologia. Essa metodologia possui uma interpretação interessante baseada em perfis extremos (segmentos) e grau de pertencimento. Porém o modelo possui grande complexidade de estimação dos parâmetros pormáxima verossimilhança. Assim, neste trabalho propõe-se o uso de algoritmos genéticos para diminuir a complexidade e o tempo de cálculo, e aumentar a acurácia. A técnica é nomeada de Genetics Algorithms grade of membership (GA-GoM). Para averiguar a efetividade, o modelo foi primeiramente abordado por simulação – foi executado um experimento fatorial levando em conta o número de segmentos e variáveis trabalhadas. Em seguida, foi abordado um caso prático de segmentação de engajamento em redes sociais. Os resultados são superiores para modelos de maior complexidade. Conclui-se, assim, que é útil a abordagem para grandes bases de dados que contenham dados categóricos.
Resumo:
Tesis (Maestría en Ciencias en Ingeniería Eléctrica, con especialidad en Sistemas Eléctricos de Potencia) U.A.N.L.
Resumo:
Tesis (Maestro en Ciencias de la Ingeniería Eléctrica con Especialidad en Control) - Universidad Autónoma de Nuevo León, 1999