876 resultados para algorithm optimization
Resumo:
This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.
Resumo:
In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.
Resumo:
Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The overall performance of random early detection (RED) routers in the Internet is determined by the settings of their associated parameters. The non-availability of a functional relationship between the RED performance and its parameters makes it difficult to implement optimization techniques directly in order to optimize the RED parameters. In this paper, we formulate a generic optimization framework using a stochastically bounded delay metric to dynamically adapt the RED parameters. The constrained optimization problem thus formulated is solved using traditional nonlinear programming techniques. Here, we implement the barrier and penalty function approaches, respectively. We adopt a second-order nonlinear optimization framework and propose a novel four-timescale stochastic approximation algorithm to estimate the gradient and Hessian of the barrier and penalty objectives and update the RED parameters. A convergence analysis of the proposed algorithm is briefly sketched. We perform simulations to evaluate the performance of our algorithm with both barrier and penalty objectives and compare these with RED and a variant of it in the literature. We observe an improvement in performance using our proposed algorithm over RED, and the above variant of it.
Resumo:
Alopex is a correlation-based gradient-free optimization technique useful in many learning problems. However, there are no analytical results on the asymptotic behavior of this algorithm. This article presents a new version of Alopex that can be analyzed using techniques of two timescale stochastic approximation method. It is shown that the algorithm asymptotically behaves like a gradient-descent method, though it does not need (or estimate) any gradient information. It is also shown, through simulations, that the algorithm is quite effective.
Resumo:
This article aims to obtain damage-tolerant designs with minimum weight for a laminated composite structure using genetic algorithm. Damage tolerance due to impacts in a laminated composite structure is enhanced by dispersing the plies such that too many adjacent plies do not have the same angle. Weight of the structure is minimized and the Tsai-Wu failure criterion is considered for the safe design. Design variables considered are the number of plies and ply orientation. The influence of dispersed ply angles on the weight of the structure for a given loading conditions is studied by varying the angles in the range of 0 degrees-45 degrees, 0 degrees-60 degrees and 0 degrees-90 degrees at intervals of 5 degrees and by using specific ply angles tailored to loading conditions. A comparison study is carried out between the conventional stacking sequence and the stacking sequence with dispersed ply angles for damage-tolerant weight minimization and some useful designs are obtained. Unconventional stacking sequence is more damage tolerant than the conventional stacking sequence is demonstrated by performing a finite element analysis under both tensile as well as compressive loading conditions. Moreover, a new mathematical function called the dispersion function is proposed to measure the dispersion of ply angles in a laminate. The approach for dispersing ply angles to achieve damage tolerance is especially suited for composite material design space which has multiple local minima.
Resumo:
在应用激光技术加工复杂曲面时,通常以采样点集为插值点来建立曲面函数,然后实现曲面上任意坐标点的精确定位。人工神经网络的BP算法能实现函数插值,但计算精度偏低,往往达不到插值精确要求,造成较大的加工误差。提出人工神经网络的共轭梯度最优化插值新算法,并通过实例仿真,证明了这种曲面精确定位方法的可行性,从而为激光加工的三维精确定位提供了一种良好解决方案。这种方法已经应用在实际中。
Resumo:
This paper introduces a new technique called species conservation for evolving parallel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current generation are saved (conserved) by moving them into the next generation. Our technique has proved to be very effective in finding multiple solutions of multimodal optimization problems. We demonstrate this by applying it to a set of test problems, including some problems known to be deceptive to genetic algorithms.
Resumo:
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.
Resumo:
In this paper, a new method for designing three-zone optical pupil filter is presented. The phase-only optical pupil filter and the amplitude-only optical pupil filters were designed. The first kind of pupil for optical data storage can increase the transverse resolution. The second kind of pupil filter can increase the axial and transverse resolution at the same time, which is applicable in three-dimension imaging in confocal microscopy. (C) 2007 Elsevier GmbH. All rights reserved.