910 resultados para algebraic K-theory
Resumo:
Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
Cover title.
Resumo:
The author is supported by an NSERC PDF.
Resumo:
The author is supported by an NSERC PDF.
Resumo:
We show that the theory of involutive bases can be combined with discrete algebraic Morse Theory. For a graded k[x0 ...,xn]-module M, this yields a free resolution G, which in general is not minimal. We see that G is isomorphic to the resolution induced by an involutive basis. It is possible to identify involutive bases inside the resolution G. The shape of G is given by a concrete description. Regarding the differential dG, several rules are established for its computation, which are based on the fact that in the computation of dG certain patterns appear at several positions. In particular, it is possible to compute the constants independent of the remainder of the differential. This allows us, starting from G, to determine the Betti numbers of M without computing a minimal free resolution: Thus we obtain a new algorithm to compute Betti numbers. This algorithm has been implemented in CoCoALib by Mario Albert. This way, in comparison to some other computer algebra system, Betti numbers can be computed faster in most of the examples we have considered. For Veronese subrings S(d), we have found a Pommaret basis, which yields new proofs for some known properties of these rings. Via the theoretical statements found for G, we can identify some generators of modules in G where no constants appear. As a direct consequence, some non-vanishing Betti numbers of S(d) can be given. Finally, we give a proof of the Hyperplane Restriction Theorem with the help of Pommaret bases. This part is largely independent of the other parts of this work.
Resumo:
Projective Hjelmslev planes and affine Hjelmslev planes are generalisations of projective planes and affine planes. We present an algorithm for constructing projective Hjelmslev planes and affine Hjelmslev planes that uses projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelmslev planes can be constructed in this way. As a corollary it is shown that all $2$-uniform affine Hjelmslev planes are sub-geometries of $2$-uniform projective Hjelmslev planes.
Resumo:
We investigate the group valued functor G(D) = D*/F*D' where D is a division algebra with center F and D' the commutator subgroup of D*. We show that G has the most important functorial properties of the reduced Whitehead group SK1. We then establish a fundamental connection between this group, its residue version, and relative value group when D is a Henselian division algebra. The structure of G(D) turns out to carry significant information about the arithmetic of D. Along these lines, we employ G(D) to compute the group SK1(D). As an application, we obtain theorems of reduced K-theory which require heavy machinery, as simple examples of our method.
Resumo:
Mesh generation is an important step inmany numerical methods.We present the “HierarchicalGraphMeshing” (HGM)method as a novel approach to mesh generation, based on algebraic graph theory.The HGM method can be used to systematically construct configurations exhibiting multiple hierarchies and complex symmetry characteristics. The hierarchical description of structures provided by the HGM method can be exploited to increase the efficiency of multiscale and multigrid methods. In this paper, the HGMmethod is employed for the systematic construction of super carbon nanotubes of arbitrary order, which present a pertinent example of structurally and geometrically complex, yet highly regular, structures. The HGMalgorithm is computationally efficient and exhibits good scaling characteristics. In particular, it scales linearly for super carbon nanotube structures and is working much faster than geometry-based methods employing neighborhood search algorithms. Its modular character makes it conducive to automatization. For the generation of a mesh, the information about the geometry of the structure in a given configuration is added in a way that relates geometric symmetries to structural symmetries. The intrinsically hierarchic description of the resulting mesh greatly reduces the effort of determining mesh hierarchies for multigrid and multiscale applications and helps to exploit symmetry-related methods in the mechanical analysis of complex structures.
Resumo:
While the inventor is often the driver of an invention in the early stages, he/she needs to move between different social networks for knowledge in order to create and capture value. The main objective of this research is to propose a literature-based framework based on innovation network theory and complemented with C-K theory, in order to analyze the invention/innovation process of inventors and the product concepts in a packaging industry context. Empirical input from three case studies of packaging inventions and their inventors is used to elaborate the suggested framework.The article identifies important gaps in the literature of innovation networks. This is addressed through a theoretical framework based on network theories, complemented with C-K theory for the product design level. The strength-of-ties dimension of the theoretical framework suggests, in agreement with the mainstream literature and the cases presented, that weak ties are required to access the knowledge related to exploration networks and strong ties are required to utilize the knowledge in the exploitation network. The transformation network is an intermediate step acting as a bridge where entrepreneurs can find required knowledge. The transformation network is also an intermediate step where entrepreneurs find financing and companies interested in commercializing inventions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS