420 resultados para aldehyde dehydrogenases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastatic progression of advanced prostate cancer is a major clinical problem. Identifying the cell(s) of origin in prostate cancer and its distant metastases may permit the development of more effective treatment and preventive therapies. In this study, aldehyde dehydrogenase (ALDH) activity was used as a basis to isolate and compare subpopulations of primary human prostate cancer cells and cell lines. ALDH-high prostate cancer cells displayed strongly elevated clonogenicity and migratory behavior in vitro. More strikingly, ALDH-high cells readily formed distant metastases with strongly enhanced tumor progression at both orthotopic and metastatic sites in preclinical models. Several ALDH isoforms were expressed in human prostate cancer cells and clinical specimens of primary prostate tumors with matched bone metastases. Our findings suggest that ALDH-based viable cell sorting can be used to identify and characterize tumor-initiating and, more importantly perhaps, metastasis-initiating cells in human prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing relevance of the cancer stem cell (CSC) hypothesis and the impact of CSC-associated markers in the carcinogenesis of solid tumours may provide potential prognostic implications in lung cancer. We propose that a collective genetic analysis of established CSC-related markers will generate data to better define the role of putative CSCs in lung adenocarcinoma (LAC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence has shown that oxidation of RNA, including messenger RNA (mRNA), is elevated in several age-related diseases, although investigation of oxidized levels of individual RNA species has been limited. Recently we reported that an aldehyde reactive probe (ARP) quantitatively reacts with oxidatively modified depurinated/depyrimidinated (abasic) RNA. Here we report a novel method to isolate oxidized RNA using ARP and streptavidin beads. An oligo RNA containing abasic sites that were derivatized with ARP was pulled down by streptavidin beads, whereas a control oligo RNA was not. In vitro oxidized RNA, as well as total cellular RNA, isolated from oxidatively stressed cells was also pulled down, dependent on oxidation level, and concentrated in the pull-down fraction. Quantitative reverse transcription polymerase chain reaction (RT-PCR) using RNA in the pull-down fraction demonstrated that several gene transcripts were uniquely increased in the fraction by oxidative stress. Thus, our method selectively concentrates oxidized RNA by pull-down and enables the assessment of oxidation levels of individual RNA species. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protection against Mycobacterium tuberculosis requires development and maintenance of granulomatous lesions, a feature considered to be the pathological hallmark of Tuberculosis (TB) disease. Upon encountering Mtb or mycobacterial antigens, specifically trehalose 6,6'-dimycolate (TDM), a strong local pro-inflammatory response is initiated. Systemic production of anti-inflammatory glucocorticoids (GCs) is also induced. Emergence of these antagonists at the inflammatory foci is counterproductive to development of the granulomatous structure and detrimental to host protection against TB. Therefore, it was hypothesized that local enzymatic regulation of GCs occurs locally at the site of granulomatous inflammation. The experiments described here strongly suggest that 11β-hydroxysteroid dehydrogenases (11βHSDs) shuttle GCs between active and inert forms during the acute granulomatous response, supporting the net reduction of corticosterone. The patterns of GC and 11βHSD regulation were specific to the lung (the site of inflammation) and were not observed in other tissues. Furthermore, 11βHSD2, which decreases corticosterone concentrations, was not expressed in models of dysregulated granulomatous inflammation. These findings suggest that cellular exposure to local active GC concentrations is restricted via 11βHSDs as a mechanism to initiate and maintain granuloma formation. The information derived from the experiments outlined in this dissertation provides a better understanding of the events required for establishment and maintenance of the protective granulomatous response. As a practical consequence, exploiting 11βHSD2 modulation of GCs at the site of Mtb infection may lead to improvement of Tuberculosis treatment strategies.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamond dust (DD) refers to tiny ice crystals that form frequently in the Polar troposphere under clear sky conditions. They provide surfaces for chemical reactions and scatter light. We have measured the specific surface area (SSA) of DD at Barrow in March-April 2009. We have also measured its chemical composition in mineral and organic ions, dissolved organic carbon (DOC), aldehydes, H2O2, and the absorption spectra of water-soluble chromophores. Mercury concentrations were also measured in spring 2006, when conditions were similar. The SSA of DD ranges from 79.9 to 223 m**2/kg . The calculated ice surface area in the atmosphere reaches 11000 (±70%) µm**2/cm**3, much higher than the aerosol surface area. However, the impact of DD on the downwelling and upwelling light fluxes in the UV and visible is negligible. The composition of DD is markedly different from that of snow on the surface. Its concentrations in mineral ions are much lower, and its overall composition is acidic. Its concentrations in aldehydes, DOC, H2O2 and mercury are much higher than in surface snows. Our interpretation is that DOC from the oceanic surface microlayer, coming from open leads in the ice off of Barrow, is taken up by DD. Active chemistry in the atmosphere takes place on DD crystal surfaces, explaining its high concentrations in aldehydes and mercury. After deposition, active photochemistry modifies DD composition, as seen from the modifications in its absorption spectra and aldehyde and H2O2 content. This probably leads to the emissions of reactive species to the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian renal toxicant tetrafluoroethylcysteine (TFEC) is metabolized to a reactive intermediate that covalently modifies the lysine residues of a select group of mitochondrial proteins, forming difluorothioamidyl lysine protein adducts. Cellular damage is initiated by this process and cell death ensues. NH2-terminal sequence analysis of purified mitochondrial proteins containing difluorothioamidyl lysine adducts identified the lipoamide succinyltransferase and dihydrolipoamide dehydrogenase subunits of the α-ketoglutarate dehydrogenase complex (αKGDH), a key regulatory component of oxidative metabolism, as targets for TFEC action. Adduct formation resulted in marked inhibition of αKGDH enzymatic activity, whereas the related pyruvate dehydrogenase complex was unmodified by TFEC and its activity was not inhibited in vivo. Covalent modification of αKGDH subunits also resulted in interactions with mitochondrial chaperonin HSP60 in vivo and with HSP60 and mitochondrial HSP70 in vitro. These observations confirm the role of mammalian stress proteins in the recognition of abnormal proteins and provide supporting evidence for reactive metabolite-induced cell death by modification of critical protein targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldehyde dehydrogenase class 3 (ALDH3) constitutes 20–40% of the total water-soluble proteins in the mammalian cornea. Here, we show by Northern blot analysis that ALDH3 expression in the mouse is at least 500-fold higher in the cornea than in any other tissue examined, with very low levels of expression detected in the stomach, urinary bladder, ocular lens, and lung. Histochemical localization reveals that this exceptional level of expression in the mouse cornea occurs in the anterior epithelial cells and that little ALDH3 is present in the keratocytes or corneal endothelial cells. A 13-kbp mouse ALDH3 promoter fragment containing >12 kbp of the 5′ flanking sequence, the 40-bp untranslated first exon, and 29 bp of intron 1 directed cat reporter gene expression to tissues that express the endogenous ALDH3 gene, except that transgene promoter activity was higher in the stomach and bladder than in the cornea. By contrast, when driven by a 4.4-kbp mouse ALDH3 promoter fragment [1,050-bp 5′ flanking region, exon 1, intron 1 (3.4 kbp), and 7 bp of exon 2] expression of the cat reporter gene was confined to the corneal epithelial cells, except for very low levels in the liver, effectively reproducing the corneal expression pattern of the endogenous ALDH3 gene. These results indicate that tissue-specific expression of ALDH3 is determined by positive and negative elements in the 5′ flanking region of the gene and suggests putative silencers located in intron 1. We demonstrate regulatory sequences capable of directing cornea-specific gene expression, affording the opportunity for genetic engineering in this transparent tissue.