997 resultados para aircraft structures


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous fiber/metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent fatigue endurance and low density. Glass fibers/epoxy laminae and aluminum foil (Glare) are commonly used to obtain these hybrid composites. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, epoxy resins absorb moisture when exposed to humid environments and metals are prone to surface corrosion. Therefore, the combination of the two materials in Glare (polymeric composite and metal). can lead to differences that often turn out to be beneficial in terms of mechanical properties and resistance to environmental influences. In this work. The viscoelastic properties. such as storage modulus (E') and loss modulus (E'), were obtained for glass fiber/epoxy composite, aluminum 2024-T3 alloy and for a glass fiber/epoxy/aluminum laminate (Glare). It was found that the glass fiber/epoxy (G/E) composites decrease the E' modulus during hygrothermal conditioning up to saturation point (6 weeks). However, for Glare laminates the E' modulus remains unchanged (49GPa) during the cycle of hygrothermal conditioning. The outer aluminum sheets in the Glare laminate shield the G/E composite laminae from moisture absorption. which in turn prevent, in a certain extent, the material from hygrothermal degradation effects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stitched fabrics have been widely studied for potential application in aircraft structures since stitch yarns offer improvements in the out-of-plane mechanical properties and also can save time in the lay up process. The down side of stitch yarns came up in the manufacturing process of fabric in which defects introduced by the needle movement creating fiber-free-zones, fiber breakage and misalignment of fibers. The dry stitched carbon fabric preform has mainly been used in the Resin Transfer Molding (RTM) process which high fiber content is aimed, those defects influence negatively the injection behavior reducing the mechanical properties of final material. The purpose of this research work focused on testing in quasi-static mechanical mode (in-plane tension) of a monocomponent resin CYCOM (R) 890 RTM/carbon fiber anti-symmetric quadriaxial fabric stitched by PE 80Dtex yarn processed by RTM. The evaluation consisted in comparing the scatter of the quasi-static test with the attenuation of ultrasonic maps, which show the path of the resin and possible dry spots considering that interference of yarn in resin flow is detectable in ultrasonic measurement. Microscopic analysis was also considered for further evaluation in case of premature failure. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fiber metal laminates are the frontline materials for aeronautical and space structures. These composites consists of layers of 2024-T3-aluminum alloy and composite prepreg layers. When the composite layer is a carbon fiber prepreg, the fiber metal laminate, named Carall, offers significant improvements over current available materials for aircraft structures. While weight reduction and improved damage tolerance characteristics were the prime drivers to develop this new family of materials, it turns out that they have additional benefits, which become more and more important for today's designers, such as cost reduction and improved safety. The degradation of composites is due to environmental effects mainly on the chemical and/or physical properties of the polymer matrix leading to loss of adhesion of fiber/resin interface. Also, the reduction of fiber strength and stiffness are expected due to environmental degradation. Changes in interface/interphase properties leads to more pronounced changes in shear properties than any other mechanical properties. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites and Carall have been investigated by using interlaminar shear (ILSS) and Iosipescu tests. It was observed that hygrothermal conditioning reduces the Iosipescu shear strength of CF/E and Carall composites due to the moisture absorption in these materials. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For engineering projects that require high reliability levels, is often not enough know only physical and chemical material properties. It’s necessary understand the failure mode of these materials in operation to ensure security level in the project and establish more stringent criteria in the analysis of structural integrity. Due to this need, aircraft industry has been using aluminum alloys in their designs and projects. “Currently more than 70% of aircraft structures are built of high strength aluminum alloys among which stand out 7075-T6 and 2024-T3 alloys, which are considered basics for being used in the new alloys development.” (PASTOUKHOV & VOORWALD, 1995). Some years ago ALCOA develops Al 2524 alloy that has emerged as refinement of Al 2024 (Al, Cu. Mg) alloy, with purpose of improve fracture toughness and fatigue resistance on structural components. The present research addresses testing of fatigue crack propagation under variable amplitude loading for Al 2024 alloy, observing the interaction effects from application of overhead blocks and plastic zone at the crack tip and makes an analysis of fracture surface images

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EPON 862 is an epoxy resin which is cured with the hardening agent DETDA to form a crosslinked epoxy polymer and is used as a component in modern aircraft structures. These crosslinked polymers are often exposed to prolonged periods of temperatures below glass transition range which cause physical aging to occur. Because physical aging can compromise the performance of epoxies and their composites and because experimental techniques cannot provide all of the necessary physical insight that is needed to fully understand physical aging, efficient computational approaches to predict the effects of physical aging on thermo-mechanical properties are needed. In this study, Molecular Dynamics and Molecular Minimization simulations are being used to establish well-equilibrated, validated molecular models of the EPON 862-DETDA epoxy system with a range of crosslink densities using a united-atom force field. These simulations are subsequently used to predict the glass transition temperature, thermal expansion coefficients, and elastic properties of each of the crosslinked systems for validation of the modeling techniques. The results indicate that glass transition temperature and elastic properties increase with increasing levels of crosslink density and the thermal expansion coefficient decreases with crosslink density, both above and below the glass transition temperature. The results also indicate that there may be an upper limit to crosslink density that can be realistically achieved in epoxy systems. After evaluation of the thermo-mechanical properties, a method is developed to efficiently establish molecular models of epoxy resins that represent the corresponding real molecular structure at specific aging times. Although this approach does not model the physical aging process, it is useful in establishing a molecular model that resembles the physically-aged state for further use in predicting thermo-mechanical properties as a function of aging time. An equation has been predicted based on the results which directly correlate aging time to aged volume of the molecular model. This equation can be helpful for modelers who want to study properties of epoxy resins at different levels of aging but have little information about volume shrinkage occurring during physical aging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los Sistemas de SHM o de monitorización de la integridad estructural surgen ante la necesidad de mejorar los métodos de evaluación y de test no destructivos convencionales. De esta manera, se puede tener controlado todo tipo de estructuras en las cuales su correcto estado o funcionamiento suponga un factor crítico. Un Sistema SHM permite analizar una estructura concreta capturando de manera periódica el estado de la integridad estructural, que en este proyecto se ha aplicado a estructuras aeronáuticas. P.A.M.E.L.A. (Phase Array Monitoring for Enhanced Life Assessment) es la denominación utilizada para definir una serie de equipos electrónicos para Sistemas SHM desarrollados por AERNOVA y los Grupos de Diseño Electrónico de las universidades UPV/EHU y UPM. Los dispositivos P.A.M.E.L.A. originalmente no cuentan con tecnología Wi-Fi, por lo que incorporan un módulo hardware independiente que se encarga de las comunicaciones inalámbricas, a los que se les denomina Nodos. Estos Nodos poseen un Sistema Operativo propio y todo lo necesario para administrar y organizar la red Mallada Wi-Fi. De esta manera se obtiene una red mallada inalámbrica compuesta por Nodos que interconectan los Sistemas SHM y que se encargan de transmitir los datos a los equipos que procesan los resultados adquiridos por P.A.M.E.L.A. Los Nodos son dispositivos empotrados que llevan instalados un firmware basado en una distribución de Linux para Nodos (o Routers), llamado Openwrt. Que para disponer de una red mallada necesitan de un protocolo orientado a este tipo de redes. Entre las opciones de protocolo más destacadas se puede mencionar: DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing), B.A.T.M.A.N-Adv (Better Approach To Mobile Adhoc Networking Advance), BMX (una versión de B.A.T.M.A.N-Adv), AODV (Ad hoc On-Demand Distance Vector) y el DSR (Dynamic Source Routing). Además de la existencia de protocolos orientados a las redes malladas, también hay organizaciones que se dedican a desarrollar firmware que los utilizan, como es el caso del firmware llamado Nightwing que utiliza BMX, Freifunk que utiliza OLSR o Potato Mesh que utiliza B.A.T.M.A.N-Adv. La ventaja de estos tres firmwares mencionados es que las agrupaciones que las desarrollan proporcionan las imágenes precompiladas del sistema,listas para cargarlas en distintos modelos de Nodos. En este proyecto se han instalado las imágenes en los Nodos y se han probado los protocolos BMX, OLSR y B.A.T.M.A.N.-Adv. Concluyendo que la red gestionada por B.A.T.M.A.N.-Adv era la que mejor rendimiento obtenía en cuanto a estabilidad y ancho de banda. Después de haber definido el protocolo a usar, se procedió a desarrollar una distribución basada en Openwrt, que utilice B.A.T.M.A.N.-Adv para crear la red mallada, pero que se ajuste mejor a las necesidades del proyecto, ya que Nightwing, Freifunk y Potato Mesh no lo hacían. Además se implementan aplicaciones en lenguaje ANSI C y en LabVIEW para interactuar con los Nodos y los Sistemas SHM. También se procede a hacer alguna modificación en el Hardware de P.A.M.E.L.A. y del Nodo para obtener una mejor integración entre los dos dispositivos. Y por ultimo, se prueba la transferencia de datos de los Nodos en distintos escenarios. ABSTRACT. Structural Health Monitoring (SHM) systems arise from the need of improving assessment methods and conventional nondestructive tests. Critical structures can be monitored using SHM. A SHM system analyzes periodically a specific structure capturing the state of structural integrity. The aim of this project is to contribute in the implementation of Mesh network for SHM system in aircraft structures. P.A.M.E.L.A. (Phase Array Monitoring for Enhanced Life Assessment) is the name for electronic equipment developed by AERNOVA, the Electronic Design Groups of university UPV/EHU and the Instrumentation and Applied Acoustics research group from UPM. P.A.M.E.L.A. devices were not originally equipped with Wi-Fi interface. In this project a separate hardware module that handles wireless communications (nodes) has been added. The nodes include an operating system for manage the Wi-Fi Mesh Network and they form the wireless mesh network to link SHM systems with monitoring equipment. Nodes are embedded devices with an installed firmware based on special Linux distribution used in routers or nodes, called OpenWRT. They need a Mesh Protocol to stablish the network. The most common protocols options are: DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing), BATMAN-Adv (Better Approach To Mobile Ad-hoc Networking Advance), BMX (a version of BATMAN-Adv) AODV (Ad hoc on-Demand Distance Vector) and DSR (Dynamic Source Routing). In addition, there are organizations that are dedicated to develope firmware using these Mesh Protocols, for instance: Nightwing uses BMX, Freifunk use OLSR and Potato Mesh uses BATMAN-Adv. The advantage of these three firmwares is that these groups develop pre-compiled images of the system ready to be loaded in several models of Nodes. In this project the images were installed in the nodes. In this way, BMX, OLSR and BATMAN-Adv have been tested. We conclude that the protocol BATMAN-Adv has better performance in terms of stability and bandwidth. After choosing the protocol, the objective was to develop a distribution based on OpenWRT, using BATMAN-Adv to create the mesh network. This distribution is fitted to the requirements of this project. Besides, in this project it has been developed applications in C language and LabVIEW to interact with the Nodes and the SHM systems. The project also address some modifications to the PAMELA hardware and the Node, for better integration between both elements. Finally, data transfer tests among the different nodes in different scenarios has been carried out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Una de las barreras para la aplicación de las técnicas de monitorización de la integridad estructural (SHM) basadas en ondas elásticas guiadas (GLW) en aeronaves es la influencia perniciosa de las condiciones ambientales y de operación (EOC). En esta tesis se ha estudiado dicha influencia y la compensación de la misma, particularizando en variaciones del estado de carga y temperatura. La compensación de dichos efectos se fundamenta en Redes Neuronales Artificiales (ANN) empleando datos experimentales procesados con la Transformada Chirplet. Los cambios en la geometría y en las propiedades del material respecto al estado inicial de la estructura (lo daños) provocan cambios en la forma de onda de las GLW (lo que denominamos característica sensible al daño o DSF). Mediante técnicas de tratamiento de señal se puede buscar una relación entre dichas variaciones y los daños, esto se conoce como SHM. Sin embargo, las variaciones en las EOC producen también cambios en los datos adquiridos relativos a las GLW (DSF) que provocan errores en los algoritmos de diagnóstico de daño (SHM). Esto sucede porque las firmas de daño y de las EOC en la DSF son del mismo orden. Por lo tanto, es necesario cuantificar y compensar el efecto de las EOC sobre la GLW. Si bien existen diversas metodologías para compensar los efectos de las EOC como por ejemplo “Optimal Baseline Selection” (OBS) o “Baseline Signal Stretching” (BSS), estas, se emplean exclusivamente en la compensación de los efectos térmicos. El método propuesto en esta tesis mezcla análisis de datos experimentales, como en el método OBS, y modelos basados en Redes Neuronales Artificiales (ANN) que reemplazan el modelado físico requerido por el método BSS. El análisis de datos experimentales consiste en aplicar la Transformada Chirplet (CT) para extraer la firma de las EOC sobre la DSF. Con esta información, obtenida bajo diversas EOC, se entrena una ANN. A continuación, la ANN actuará como un interpolador de referencias de la estructura sin daño, generando información de referencia para cualquier EOC. La comparación de las mediciones reales de la DSF con los valores simulados por la ANN, dará como resultado la firma daño en la DSF, lo que permite el diagnóstico de daño. Este esquema se ha aplicado y verificado, en diversas EOC, para una estructura unidimensional con un único camino de daño, y para una estructura representativa de un fuselaje de una aeronave, con curvatura y múltiples elementos rigidizadores, sometida a un estado de cargas complejo, con múltiples caminos de daños. Los efectos de las EOC se han estudiado en detalle en la estructura unidimensional y se han generalizado para el fuselaje, demostrando la independencia del método respecto a la configuración de la estructura y el tipo de sensores utilizados para la adquisición de datos GLW. Por otra parte, esta metodología se puede utilizar para la compensación simultánea de una variedad medible de EOC, que afecten a la adquisición de datos de la onda elástica guiada. El principal resultado entre otros, de esta tesis, es la metodología CT-ANN para la compensación de EOC en técnicas SHM basadas en ondas elásticas guiadas para el diagnóstico de daño. ABSTRACT One of the open problems to implement Structural Health Monitoring techniques based on elastic guided waves in real aircraft structures at operation is the influence of the environmental and operational conditions (EOC) on the damage diagnosis problem. This thesis deals with the compensation of these environmental and operational effects, specifically, the temperature and the external loading, by the use of the Chirplet Transform working with Artificial Neural Networks. It is well known that the guided elastic wave form is affected by the damage appearance (what is known as the damage sensitive feature or DSF). The DSF is modified by the temperature and by the load applied to the structure. The EOC promotes variations in the acquired data (DSF) and cause mistakes in damage diagnosis algorithms. This effect promotes changes on the waveform due to the EOC variations of the same order than the damage occurrence. It is difficult to separate both effects in order to avoid damage diagnosis mistakes. Therefore it is necessary to quantify and compensate the effect of EOC over the GLW forms. There are several approaches to compensate the EOC effects such as Optimal Baseline Selection (OBS) or Baseline Signal Stretching (BSS). Usually, they are used for temperature compensation. The new method proposed here mixes experimental data analysis, as in the OBS method, and Artificial Neural Network (ANN) models to replace the physical modelling which involves the BSS method. The experimental data analysis studied is based on apply the Chirplet Transform (CT) to extract the EOC signature on the DSF. The information obtained varying EOC is employed to train an ANN. Then, the ANN will act as a baselines interpolator of the undamaged structure. The ANN generates reference information at any EOC. By comparing real measurements of the DSF against the ANN simulated values, the damage signature appears clearly in the DSF, enabling an accurate damage diagnosis. This schema has been applied in a range of EOC for a one-dimensional structure containing single damage path and two dimensional real fuselage structure with stiffener elements and multiple damage paths. The EOC effects tested in the one-dimensional structure have been generalized to the fuselage showing its independence from structural arrangement and the type of sensors used for GLW data acquisition. Moreover, it can be used for the simultaneous compensation of a variety of measurable EOC, which affects the guided wave data acquisition. The main result, among others, of this thesis is the CT-ANN methodology for the compensation of EOC in GLW based SHM technique for damage diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.