979 resultados para adaptive dynamics
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
For high performance aircrafts, the flight control system needs to be quite effective in both assuring accurate tracking of pilot commands, while simultaneously assuring overall stability of the aircraft. In addition, the control system must also be sufficiently robust to cater to possible parameter variations. The primary aim of this paper is to enhance the robustness of the controller for a HPA using neuro-adaptive control design. Here the architecture employs a network of Gaussian Radial basis functions to adaptively compensate for the ignored system dynamics. A stable weight mechanism is determined using Lyapunov theory. The network construction and performance of the resulting controller are illustrated through simulations with a low-fidelity six –DOF model of F16 that is available in open literature.
Resumo:
Based on dynamic inversion, a relatively straightforward approach is presented in this paper for nonlinear flight control design of high performance aircrafts, which does not require the normal and lateral acceleration commands to be first transferred to body rates before computing the required control inputs. This leads to substantial improvement of the tracking response. Promising results are obtained from six degree-offreedom simulation studies of F-16 aircraft, which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response (including elimination of non-minimum phase behavior) and reduced control magnitude. Next, a model-following neuron-adaptive design is augmented the nominal design in order to assure robust performance in the presence of parameter inaccuracies in the model. Note that in the approach the model update takes place adaptively online and hence it is philosophically similar to indirect adaptive control. However, unlike a typical indirect adaptive control approach, there is no need to update the individual parameters explicitly. Instead the inaccuracy in the system output dynamics is captured directly and then used in modifying the control. This leads to faster adaptation, which helps in stabilizing the unstable plant quicker. The robustness study from a large number of simulations shows that the adaptive design has good amount of robustness with respect to the expected parameter inaccuracies in the model.
Resumo:
In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
The application of principles from evolutionary biology has long been used to gain new insights into the progression and clinical control of both infectious diseases and neoplasms. This iterative evolutionary process consists of expansion, diversification and selection within an adaptive landscape - species are subject to random genetic or epigenetic alterations that result in variations; genetic information is inherited through asexual reproduction and strong selective pressures such as therapeutic intervention can lead to the adaptation and expansion of resistant variants. These principles lie at the center of modern evolutionary synthesis and constitute the primary reasons for the development of resistance and therapeutic failure, but also provide a framework that allows for more effective control.
A model system for studying the evolution of resistance and control of therapeutic failure is the treatment of chronic HIV-1 infection by broadly neutralizing antibody (bNAb) therapy. A relatively recent discovery is that a minority of HIV-infected individuals can produce broadly neutralizing antibodies, that is, antibodies that inhibit infection by many strains of HIV. Passive transfer of human antibodies for the prevention and treatment of HIV-1 infection is increasingly being considered as an alternative to a conventional vaccine. However, recent evolution studies have uncovered that antibody treatment can exert selective pressure on virus that results in the rapid evolution of resistance. In certain cases, complete resistance to an antibody is conferred with a single amino acid substitution on the viral envelope of HIV.
The challenges in uncovering resistance mechanisms and designing effective combination strategies to control evolutionary processes and prevent therapeutic failure apply more broadly. We are motivated by two questions: Can we predict the evolution to resistance by characterizing genetic alterations that contribute to modified phenotypic fitness? Given an evolutionary landscape and a set of candidate therapies, can we computationally synthesize treatment strategies that control evolution to resistance?
To address the first question, we propose a mathematical framework to reason about evolutionary dynamics of HIV from computationally derived Gibbs energy fitness landscapes -- expanding the theoretical concept of an evolutionary landscape originally conceived by Sewall Wright to a computable, quantifiable, multidimensional, structurally defined fitness surface upon which to study complex HIV evolutionary outcomes.
To design combination treatment strategies that control evolution to resistance, we propose a methodology that solves for optimal combinations and concentrations of candidate therapies, and allows for the ability to quantifiably explore tradeoffs in treatment design, such as limiting the number of candidate therapies in the combination, dosage constraints and robustness to error. Our algorithm is based on the application of recent results in optimal control to an HIV evolutionary dynamics model and is constructed from experimentally derived antibody resistant phenotypes and their single antibody pharmacodynamics. This method represents a first step towards integrating principled engineering techniques with an experimentally based mathematical model in the rational design of combination treatment strategies and offers predictive understanding of the effects of combination therapies of evolutionary dynamics and resistance of HIV. Preliminary in vitro studies suggest that the combination antibody therapies predicted by our algorithm can neutralize heterogeneous viral populations despite containing resistant mutations.
Resumo:
The manufacturing industry is currently facing unprecedented challenges from changes and disturbances. The sources of these changes and disturbances are of different scope and magnitude. They can be of a commercial nature, or linked to fast product development and design, or purely operational (e.g. rush order, machine breakdown, material shortage etc.). In order to meet these requirements it is increasingly important that a production operation be flexible and is able to adapt to new and more suitable ways of operating. This paper focuses on a new strategy for enabling manufacturing control systems to adapt to changing conditions both in terms of product variation and production system upgrades. The approach proposed is based on two key concepts: (1) An autonomous and distributed approach to manufacturing control based on multi-agent methods in which so called operational agents represent the key physical and logical elements in the production environment to be controlled - for example, products and machines and the control strategies that drive them and (2) An adaptation mechanism based around the evolutionary concept of replicator dynamics which updates the behaviour of newly formed operational agents based on historical performance records in order to be better suited to the production environment. An application of this approach for route selection of similar products in manufacturing flow shops is developed and is illustrated in this paper using an example based on the control of an automobile paint shop.
Resumo:
A type of adaptive, closed-loop controllers known as self-tuning regulators present a robust method of eliminating thermoacoustic oscillations in modern gas turbines. These controllers are able to adapt to changes in operating conditions, and require very little pre-characterisation of the system. One piece of information that is required, however, is the sign of the system's high frequency gain (or its 'instantaneous gain'). This poses a problem: combustion systems are infinite-dimensional, and so this information is never known a priori. A possible solution is to use a Nussbaum gain, which guarantees closed-loop stability without knowledge of the sign of the high frequency gain. Despite the theory for such a controller having been developed in the 1980s, it has never, to the authors' knowledge, been demonstrated experimentally. In this paper, a Nussbaum gain is used to stabilise thermoacoustic instability in a Rijke tube. The sign of the high frequency gain of the system is not required, and the controller is robust to large changes in operating conditions - demonstrated by varying the length of the Rijke tube with time. Copyright © 2008 by Simon J. Illingworth & Aimee S. Morgans.