916 resultados para acidic waste
Resumo:
Aspergillus foetidus ACR I 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4 g of citric acid per 100 g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74 g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30 degrees C, an unadjusted initial pH of 3.4, a particle size of 2 mm and 5 ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.
Resumo:
Various mesoporous catalysts with titanium loadings between 0.5 and 4 Ti wt. % and surface areas between 600 and 1,600 m(2)/g were synthesized using the molecular designed dispersion technique. These catalysts were tested using toluene oxidation in a fixed bed reactor at temperatures between 300 and 550degreesC. The reaction products were found to be CO2 and CO with selectivity towards CO2 above 80% for all catalysts. The catalytic activity of the catalysts increases with titanium loading. The total conversion at 550degreesC was not affected by the textural porosity, but increased textural porosity did significantly reduce the ignition temperature by up to 50degreesC. The Thiele modulus was calculated to be much less than one for all these materials indicating that the reaction rate is not diffusion, limited.
Resumo:
Leather industries which promote hide stabilization by the conventional chrome-tanning process are a major source of pollution because of the resultant chromium-rich wastes. In this work, an extensive characterization of such a chromium-rich waste sludge is presented, regarding its chemical composition (XRF), crystalline phase contents (XRD), organic carbon content (TOC), thermal behavior by thermogravimetry (TG) and differential scanning calorimetry (DSC), as well as its stability under chemical attack (the concentration of important ions in the leachates being determined by capillary electrophoresis) and when submitted to temperatures as high as 1100 degrees C, in air. The material showed the tendency to produce some undesirable, and previously non-detected hexavalent chromium when exposed to high temperatures, but after washing off the soluble salts and the elimination of the organic matter by firing, the resultant material was succesfully tested as a ceramic pigment in a conventional glaze composition usually employed in the ceramic the industry. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Glial fibrillary acidic protein (GFAP) is a member of the intermediary filament protein family. It is an important component of astrocytes and a known diagnostic marker of glial differentiation. GFAP is expressed in other neural tumors and pleomorphic adenoma and, less frequently, in cartilage tumors, chordomas, and soft tissue myoepitheliomas. The aim of this study was to evaluate the role of GFAP and its reliability in nonglial tumors as an immunohistochemical marker. We evaluated GFAP gene and protein expression using Q-PCR and immunohistochemistry, respectively, in 81 and 387 cases of soft tissue, bone tumors, and salivary pleomorphic adenomas. Immunohistochemistry staining for GFAP was observed in all osteosarcomas (8 cases), all pleomorphic adenomas (7 cases), in 5 of 6 soft tissue myoepitheliomas, and in 21 of 76 chondrosarcomas. By Q-PCR, GFAP was highly expressed in pleomorphic adenomas and, to a lesser extent, chondrosarcomas, soft tissue myoepitheliomas, and chondroblastic osteosarcomas. The results that we obtained by immunohistochemistry and Q-PCR were well correlated. GFAP is a potential marker for tumors with cartilaginous differentiation, supported by evidence that GFAP is expressed in certain cases of myoepithelial tumors by immunohistochemistry, including soft tissue myoepitheliomas, which are related to cartilaginous differentiation. These findings contribute significantly to the diagnosis of soft tissue myoepitheliomas with cartilaginous differentiation and chondroblastic osteosarcoma in mesenchymal tumors. Modern Pathology ( 2009) 22, 1321-1327; doi: 10.1038/modpathol.2009.99; published online 7 August 2009
Resumo:
Background: Low-fluoride dentifrices have been suggested as alternatives to reduce dental fluorosis risk, but there is no consensus regarding their clinical effectiveness, which has been suggested to be increased when their pH is acidic. Aims: This single-blind randomized clinical trial evaluated the caries increment during the use of a low-fluoride acidic liquid dentifrice. Methods: Four-year-old schoolchildren (n = 1,402) living in a fluoridated area (0.6-0.8 ppm F) were randomly allocated to 4 groups differing according to the type of dentifrice used over a 20-month period. Group 1 (n = 345): liquid dentifrice, 1,100 ppm F, pH 4.5. Group 2 (n = 343): liquid dentifrice, 1,100 ppm F, pH 7.0. Group 3 (n = 354): liquid dentifrice, 550 ppm F, pH 4.5. Group 4 (n = 360): toothpaste, 1,100 ppm F, pH 7.0. At baseline and after 20 months, clinical examinations were conducted (dmfs index) and caries increment was calculated. Data were analysed by GLM procedure using classrooms (cluster) as unit of analysis (p < 0.05). Results: The mean +/- SD (95% CI) net increments found were as follows. Group 1: 2.06 +/- 2.38 (1.8-2.3); group 2: 2.08 +/- 2.87 (1.7-2.4); group 3: 2.05 +/- 2.79 (1.7-2.4), and group 4: 2.08 +/- 2.34 (1.8-2.4). No significant differences were detected among the groups. Conclusion: In a population with high caries risk living in a fluoridated area, as the selected sample, and according to the present protocol, the low-fluoride acidic liquid dentifrice seems to lead to similar caries progression rates as conventional 1,100 ppm F toothpaste. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Aims: The physiological examination of amylase production by Aeromonas hydrophila JMP636 and identification of the mechanism of regulation. Methods and Results: Aeromonas hydrophila JMP636 was grown with single, then dual carbon sources; the growth cycle was followed and amylase activity throughout was monitored. The levels of cAMP, a known secondary messenger for the regulatory gene crp, were also examined. Amylase activity was regulated by catabolite repression. Physiological studies revealed that JMP636 exhibited both diauxic growth, with two carbon sources, and the 'acid toxicity' effect on glucose. The crp gene was cloned, expressed and inactivated from the JMP636 chromosome. Catabolite repression of amylase production and the 'acid toxicity' effect both require crp and were linked to cAMP levels. Conclusions: Regulation of amylase production was predicted to follow the model CRP-mediated cAMP-dependent Escherichia coli catabolite regulation system. Significance and Impact of the Study: This work provides an understanding of the physiology of the opportunistic pathogen Aer. hydrophila through identification of the mechanism of catabolite repression of amylase production and the existence of crp within this cell. It also provides a broader knowledge of global gene regulation and suggests regulatory mechanisms of other Aer. hydrophila gene/s.
Resumo:
Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen I protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of the trans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.